Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345865

RESUMO

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

2.
Basic Res Cardiol ; 117(1): 15, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286475

RESUMO

Hyperactivity of the sympathetic nervous system is a major driver of cardiac remodeling, exerting its effects through both α-, and ß-adrenoceptors (α-, ß-ARs). As the relative contribution of subtype α1-AR to cardiac stress responses remains poorly investigated, we subjected mice to either subcutaneous perfusion with the ß-AR agonist isoprenaline (ISO, 30 mg/kg × day) or to a combination of ISO and the stable α1-AR agonist phenylephrine (ISO/PE, 30 mg/kg × day each). Telemetry analysis revealed similar hemodynamic responses under both ISO and ISO/PE treatment i.e., permanently increased heart rates and only transient decreases in mean blood pressure during the first 24 h. Echocardiography and single cell analysis after 1 week of exposure showed that ISO/PE-, but not ISO-treated animals established α1-AR-mediated inotropic responsiveness to acute adrenergic stimulation. Morphologically, additional PE perfusion limited concentric cardiomyocyte growth and enhanced cardiac collagen deposition during 7 days of treatment. Time-course analysis demonstrated a diverging development in transcriptional patterns at day 4 of treatment i.e., increased expression of selected marker genes Xirp2, Nppa, Tgfb1, Col1a1, Postn under chronic ISO/PE treatment which was either less pronounced or absent in the ISO group. Transcriptome analyses at day 4 via RNA sequencing demonstrated that additional PE treatment caused a marked upregulation of genes allocated to extracellular matrix and fiber organization along with a more pronounced downregulation of genes involved in metabolic processes, muscle adaptation and cardiac electrophysiology. Consistently, transcriptome changes under ISO/PE challenge more effectively recapitulated early transcriptional alterations in pressure overload-induced experimental heart failure and in human hypertrophic cardiomyopathy.


Assuntos
Coração , Receptores Adrenérgicos alfa 1 , Animais , Isoproterenol/farmacologia , Camundongos , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta
3.
Basic Res Cardiol ; 117(1): 8, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230541

RESUMO

The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Colinérgicos , Ventrículos do Coração , Ratos , Receptores Muscarínicos
4.
J Cell Sci ; 132(5)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659117

RESUMO

Fibroblasts show a high range of phenotypic plasticity, including transdifferentiation into myofibroblasts. Myofibroblasts are responsible for generation of the contraction forces that are important for wound healing and scar formation. Overactive myofibroblasts, by contrast, are involved in abnormal scarring. Cell stretching and extracellular signals such as transforming growth factor ß can induce the myofibroblastic program, whereas microenvironmental conditions such as reduced tissue oxygenation have an inhibitory effect. We investigated the effects of hypoxia on myofibroblastic properties and linked this to RhoA activity. Hypoxia reversed the myofibroblastic phenotype of primary fibroblasts. This was accompanied by decreased αSMA (ACTA2) expression, alterations in cell contractility, actin reorganization and RhoA activity. We identified a hypoxia-inducible induction of ARHGAP29, which is critically involved in myocardin-related transcription factor-A (MRTF-A) signaling, the differentiation state of myofibroblasts and modulates RhoA activity. This novel link between hypoxia and MRTF-A signaling is likely to be important for ischemia-induced tissue remodeling and the fibrotic response.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cicatriz/metabolismo , Fibroblastos/fisiologia , Hipóxia/metabolismo , Miofibroblastos/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Plasticidade Celular , Transdiferenciação Celular , Proteínas Ativadoras de GTPase/metabolismo , Camundongos , Transdução de Sinais , Transativadores/metabolismo
5.
J Mol Cell Cardiol ; 134: 13-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233754

RESUMO

Cardiac fibrosis is a hallmark of heart failure for which there is no effective pharmacological therapy. By genetic modification and in vivo inhibitor approaches it was suggested that the Rho-associated kinases (ROCK1 and ROCK2) are involved in pro-fibrotic signalling in cardiac fibroblasts and that they may serve as targets for anti-fibrotic therapies. We demonstrate that simultaneous inhibition of ROCK1 and ROCK2 strongly interfered with tissue formation and their biomechanical properties in a model of engineered connective tissue (ECT), comprised of cardiac fibroblasts and collagen. These effects were observed with both rat and human ECT. Inhibitors of different chemistries, including the isoquinoline inhibitors Fasudil and H1152P as well as the pyrazol-phenyl inhibitor SR-3677, showed comparable effects. By combined treatment of ECT with TGF-ß and H1152P, we could identify ROCK as a mediator of TGF-ß-dependent tissue stiffening. Moreover, expression analyses suggested that lysyl oxidase (LOX) is a downstream target of the ROCK-actin-MRTF/SRF pathway and inhibition of this pathway by Latrunculin A and CCG-203971 showed similar anti-fibrotic effects in the ECT model as ROCK inhibitors. In line with the collagen crosslinking function of LOX, its inhibition by ß-aminopropionitrile resulted in reduced ECT stiffness, but let tissue compaction unaffected. Finally, we show that ROCK inhibition also reduced the compaction and stiffness of engineered heart muscle tissues. Our results indicate that pharmacological inhibition of ROCK has a strong anti-fibrotic potential which is in part due to a decrease in the expression of the collagen crosslinking enzyme lysyl oxidase.


Assuntos
Miocárdio/metabolismo , Miofibroblastos/metabolismo , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Actinas/metabolismo , Aminopropionitrilo/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Coração/efeitos dos fármacos , Humanos , Masculino , Miofibroblastos/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
6.
J Mol Cell Cardiol ; 127: 31-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30521840

RESUMO

The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the ß-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed ß-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.


Assuntos
Cardiomegalia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas RGS/genética , Proteínas RGS/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência
7.
Circulation ; 135(9): 881-897, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27927712

RESUMO

BACKGROUND: Chronic heart failure (HF) is associated with altered signal transduction via ß-adrenoceptors and G proteins and with reduced cAMP formation. Nucleoside diphosphate kinases (NDPKs) are enriched at the plasma membrane of patients with end-stage HF, but the functional consequences of this are largely unknown, particularly for NDPK-C. Here, we investigated the potential role of NDPK-C in cardiac cAMP formation and contractility. METHODS: Real-time polymerase chain reaction, (far) Western blot, immunoprecipitation, and immunocytochemistry were used to study the expression, interaction with G proteins, and localization of NDPKs. cAMP levels were determined with immunoassays or fluorescent resonance energy transfer, and contractility was determined in cardiomyocytes (cell shortening) and in vivo (fractional shortening). RESULTS: NDPK-C was essential for the formation of an NDPK-B/G protein complex. Protein and mRNA levels of NDPK-C were upregulated in end-stage human HF, in rats after long-term isoprenaline stimulation through osmotic minipumps, and after incubation of rat neonatal cardiomyocytes with isoprenaline. Isoprenaline also promoted translocation of NDPK-C to the plasma membrane. Overexpression of NDPK-C in cardiomyocytes increased cAMP levels and sensitized cardiomyocytes to isoprenaline-induced augmentation of contractility, whereas NDPK-C knockdown decreased cAMP levels. In vivo, depletion of NDPK-C in zebrafish embryos caused cardiac edema and ventricular dysfunction. NDPK-B knockout mice had unaltered NDPK-C expression but showed contractile dysfunction and exacerbated cardiac remodeling during long-term isoprenaline stimulation. In human end-stage HF, the complex formation between NDPK-C and Gαi2 was increased whereas the NDPK-C/Gαs interaction was decreased, producing a switch that may contribute to an NDPK-C-dependent cAMP reduction in HF. CONCLUSIONS: Our findings identify NDPK-C as an essential requirement for both the interaction between NDPK isoforms and between NDPK isoforms and G proteins. NDPK-C is a novel critical regulator of ß-adrenoceptor/cAMP signaling and cardiac contractility. By switching from Gαs to Gαi2 activation, NDPK-C may contribute to lower cAMP levels and the related contractile dysfunction in HF.


Assuntos
AMP Cíclico/análise , Insuficiência Cardíaca/patologia , Nucleosídeo NM23 Difosfato Quinases/análise , Animais , Linhagem Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nucleosídeo NM23 Difosfato Quinases/antagonistas & inibidores , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Peixe-Zebra/crescimento & desenvolvimento
8.
J Mol Cell Cardiol ; 88: 39-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26392029

RESUMO

Cardiac remodeling, a hallmark of heart disease, is associated with intense auto- and paracrine signaling leading to cardiac fibrosis. We hypothesized that the specific mediator of Gq/11-dependent RhoA activation p63RhoGEF, which is expressed in cardiac fibroblasts, plays a role in the underlying processes. We could show that p63RhoGEF is up-regulated in mouse hearts subjected to transverse aortic constriction (TAC). In an engineered heart muscle model (EHM), p63RhoGEF expression in cardiac fibroblasts increased resting and twitch tensions, and the dominant negative p63ΔN decreased both. In an engineered connective tissue model (ECT), p63RhoGEF increased tissue stiffness and its knockdown as well as p63ΔN reduced stiffness. In 2D cultures of neonatal rat cardiac fibroblasts, p63RhoGEF regulated the angiotensin II (Ang II)-dependent RhoA activation, the activation of the serum response factor, and the expression and secretion of the connective tissue growth factor (CTGF). All these processes were inhibited by the knockdown of p63RhoGEF or by p63ΔN likely based on their negative influence on the actin cytoskeleton. Moreover, we show that p63RhoGEF also regulates CTGF in engineered tissues and correlates with it in the TAC model. Finally, confocal studies revealed a closely related localization of p63RhoGEF and CTGF in the trans-Golgi network.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/metabolismo , Miocárdio/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fator de Resposta Sérica/genética , Proteína rhoA de Ligação ao GTP/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Animais Recém-Nascidos , Aorta/cirurgia , Comunicação Autócrina/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Constrição , Feminino , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Miocárdio/patologia , Comunicação Parácrina/genética , Ratos , Ratos Wistar , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Remodelação Ventricular , Proteína rhoA de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
9.
Biochem J ; 458(1): 131-40, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24299002

RESUMO

Some G-protein-coupled receptors regulate biological processes via Gα12/13- or Gαq/11-mediated stimulation of RhoGEFs (guanine-nucleotide-exchange factors). p63RhoGEF is known to be specifically activated by Gαq/11 and mediates a major part of the acute response of vascular smooth muscle cells to angiotensin II treatment. In order to gain information about the dynamics of receptor-mediated activation of p63RhoGEF, we developed a FRET-based assay to study interactions between Gαq-CFP and Venus-p63RhoGEF in single living cells. Upon activation of histaminergic H1 or muscarinic M3 receptors, a robust FRET signal occurred that allowed for the first time the analysis of the kinetics of this interaction in detail. On- and off-set kinetics of Gαq-p63RhoGEF interactions closely resembled the kinetics of Gαq activity. Analysis of the effect of RGS2 (regulator of G-protein signalling 2) on the dynamics of Gαq activity and their interaction with p63RhoGEF showed that RGS2 is able to accelerate both deactivation of Gαq proteins and dissociation of Gαq and p63RhoGEF to a similar extent. Furthermore, we were able to detect activation-dependent FRET between RGS2 and p63RhoGEF and observed a reduced p63RhoGEF-mediated downstream signalling in the presence of RGS2. In summary, these observations support the concept of a functional activation-dependent p63RhoGEF-Gαq-RGS2 complex.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sequência de Bases , Primers do DNA , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Células HEK293 , Humanos , Ligação Proteica , Transdução de Sinais
10.
Clin Chem Lab Med ; 51(6): 1273-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23241682

RESUMO

BACKGROUND: Laboratories today face increasing pressure to automate operations due to increasing workloads and the need to reduce expenditure. Few studies to date have focussed on the laboratory automation of preanalytical coagulation specimen processing. In the present study, we examined whether a clinical chemistry automation protocol meets the preanalytical requirements for the analyses of coagulation. METHODS: During the implementation of laboratory automation, we began to operate a pre- and postanalytical automation system. The preanalytical unit processes blood specimens for chemistry, immunology and coagulation by automated specimen processing. As the production of platelet-poor plasma is highly dependent on optimal centrifugation, we examined specimen handling under different centrifugation conditions in order to produce optimal platelet deficient plasma specimens. To this end, manually processed models centrifuged at 1500 g for 5 and 20 min were compared to an automated centrifugation model at 3000 g for 7 min. RESULTS: For analytical assays that are performed frequently enough to be targets for full automation, Passing-Bablok regression analysis showed close agreement between different centrifugation methods, with a correlation coefficient between 0.98 and 0.99 and a bias between -5% and +6%. For seldom performed assays that do not mandate full automation, the Passing-Bablok regression analysis showed acceptable to poor agreement between different centrifugation methods. CONCLUSIONS: A full automation solution is suitable and can be recommended for frequent haemostasis testing.


Assuntos
Automação/métodos , Centrifugação/métodos , Hemostasia , Laboratórios Hospitalares/organização & administração , Robótica/métodos , Centrifugação/instrumentação , Humanos , Robótica/instrumentação , Centros de Atenção Terciária/organização & administração
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1687-1699, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36800014

RESUMO

The anti-fibrotic drug pirfenidone (PFD) is currently in clinical testing for the treatment of heart failure with preserved ejection fraction; however, its effects on human cardiac cells have not been fully investigated. Therefore, we aimed to characterize the impact of PFD on human cardiac fibroblasts (CF) in 2D culture as well as in 3D-engineered connective tissues (ECT). We analyzed proliferation by automated cell counting and changes in signaling by immunoblotting. We generated ECT with different geometries to modify the cellular phenotype and investigated the effects of PFD on cell number and viability as well as on cell cycle activity. We further studied its effect on ECT compaction, contraction, stiffening, and strain resistance by ECT imaging, pole deflection analysis, and ultimate tensile testing. Our data demonstrate that PFD inhibits human CF proliferation in a concentration-dependent manner with an IC50 of 0.43 mg/ml and its anti-mitogenic effect was further corroborated by an inhibition of MEK1/2, ERK1/2, and riboprotein S6 (rpS6) phosphorylation. In ECT, a lower cell cycle activity was found in PFD-treated ECT and fewer cells resided in these ECT after 5 days of culture compared to the control. Moreover, ECT compaction as well as ECT contraction was impaired. Consequently, biomechanical analyses demonstrated that PFD reduced the stiffness of ECT. Taken together, our data demonstrate that the anti-fibrotic action of PFD on human CF is based on its anti-mitogenic effect in 2D cultures and ECT.


Assuntos
Tecido Conjuntivo , Fibroblastos , Humanos , Fibrose , Proliferação de Células , Ciclo Celular
12.
J Mol Cell Cardiol ; 53(2): 165-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22564263

RESUMO

Activation of α(1)-adrenoceptors (α(1)-AR) by high catecholamine levels, e.g. in heart failure, is thought to be a driving force of cardiac hypertrophy. In this context several downstream mediators and cascades have been identified to potentially play a role in cardiomyocyte hypertrophy. One of these proteins is the monomeric G protein Rac1. However, until now it is unclear how this essential G protein is activated by α(1)-AR agonists and what are the downstream targets inducing cellular growth. By using protein-based as well as pharmacological inhibitors and the shRNA technique, we demonstrate that in neonatal rat cardiomyocytes (NRCM) Rac1 is activated via a cascade involving the α(1A)-AR subtype, G(i)ßγ, the phosphoinositide-3'-kinase and the guanine nucleotide exchange factor Tiam1. We further demonstrate that this signaling induces an increase in protein synthesis, cell size and atrial natriuretic peptide expression. We identified the p21-activated kinase 2 (PAK2) as a downstream effector of Rac1 and were able to link this cascade to the activation of the pro-hypertrophic kinases ERK1/2 and p90RSK. Our data thus reveal a prominent role of the α(1A)-AR/G(i)ßγ/Tiam1-mediated activation of Rac1 and its effector PAK2 in the induction of hypertrophy in NRCM.


Assuntos
Cardiomegalia/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Aminoquinolinas/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletroforese em Gel Bidimensional , Fatores de Troca do Nucleotídeo Guanina/genética , Immunoblotting , Miócitos Cardíacos/efeitos dos fármacos , Proteínas de Neoplasias/genética , Fenilefrina/farmacologia , Pirimidinas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
13.
Proc Natl Acad Sci U S A ; 106(38): 16269-74, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805292

RESUMO

Heterotrimeric G proteins in physiological and pathological processes have been extensively studied so far. However, little is known about mechanisms regulating the cellular content and compartmentalization of G proteins. Here, we show that the association of nucleoside diphosphate kinase B (NDPK B) with the G protein betagamma dimer (Gbetagamma) is required for G protein function in vivo. In zebrafish embryos, morpholino-mediated knockdown of zebrafish NDPK B, but not NDPK A, results in a severe decrease in cardiac contractility. The depletion of NDPK B is associated with a drastic reduction in Gbeta(1)gamma(2) dimer expression. Moreover, the protein levels of the adenylyl cyclase (AC)-regulating Galpha(s) and Galpha(i) subunits as well as the caveolae scaffold proteins caveolin-1 and -3 are strongly reduced. In addition, the knockdown of the zebrafish Gbeta(1) orthologs, Gbeta(1) and Gbeta(1like), causes a cardiac phenotype very similar to that of NDPK B morphants. The loss of Gbeta(1)/Gbeta(1like) is associated with a down-regulation in caveolins, AC-regulating Galpha-subunits, and most important, NDPK B. A comparison of embryonic fibroblasts from wild-type and NDPK A/B knockout mice demonstrate a similar reduction of G protein, caveolin-1 and basal cAMP content in mammalian cells that can be rescued by re-expression of human NDPK B. Thus, our results suggest a role for the interaction of NDPK B with Gbetagamma dimers and caveolins in regulating membranous G protein content and maintaining normal G protein function in vivo.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
14.
Biomater Adv ; 139: 213041, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35909053

RESUMO

Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.


Assuntos
Fibroblastos , Miofibroblastos , Tecido Conjuntivo , Fibrose , Coração , Humanos , Fenótipo
15.
FASEB J ; 24(12): 4865-76, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739613

RESUMO

The purpose of our study was to investigate the role of endogenous p63RhoGEF in G(q/11)-dependent RhoA activation and signaling in rat aortic smooth muscle cells (RASMCs). Therefore, we studied the expression and subcellular localization in freshly isolated RASMCs and performed loss of function experiments to analyze its contribution to RhoGTPase activation and functional responses such as proliferation and contraction. By this, we could show that p63RhoGEF is endogenously expressed in RASMCs and acts there as the dominant mediator of the fast angiotensin II (ANG II)-dependent but not of the sphingosine-1-phosphate (S(1)P)-dependent RhoA activation. p63RhoGEF is not an activator of the concomitant Rac1 activation and functions independently of caveolae. The knockdown of endogenous p63RhoGEF significantly reduced the mitogenic response of ANG II, abolished ANG II-induced stress fiber formation and cell elongation in 2-D culture, and impaired the ANG II-driven contraction in a collagen-based 3-D model. In conclusion, our data provide for the first time evidence that p63RhoGEF is an important mediator of ANG II-dependent RhoA activation in RASMCs and therewith a leading actor in the subsequently triggered cellular processes, such as proliferation and contraction.


Assuntos
Angiotensina II/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Cálcio/metabolismo , Células Cultivadas , Endotelina-1/farmacologia , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/genética , Imidazóis/farmacologia , Immunoblotting , Imuno-Histoquímica , Lisofosfolipídeos/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Telmisartan
16.
J Vis Exp ; (174)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34487119

RESUMO

Fibroblasts are phenotypically highly dynamic cells, which quickly transdifferentiate into myofibroblasts in response to biochemical and biomechanical stimuli. The current understanding of fibrotic processes, including cardiac fibrosis, remains poor, which hampers the development of new anti-fibrotic therapies. Controllable and reliable human model systems are crucial for a better understanding of fibrosis pathology. This is a highly reproducible and scalable protocol to generate engineered connective tissues (ECT) in a 48-well casting plate to facilitate studies of fibroblasts and the pathophysiology of fibrotic tissue in a 3-dimensional (3D) environment. ECT are generated around the poles with tunable stiffness, allowing for studies under a defined biomechanical load. Under the defined loading conditions, phenotypic adaptations controlled by cell-matrix interactions can be studied. Parallel testing is feasible in the 48-well format with the opportunity for the time-course analysis of multiple parameters, such as tissue compaction and contraction against the load. From these parameters, biomechanical properties such as tissue stiffness and elasticity can be studied.


Assuntos
Fibroblastos , Miofibroblastos , Tecido Conjuntivo , Elasticidade , Fibroblastos/patologia , Fibrose , Humanos
17.
Cells ; 10(4)2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801779

RESUMO

The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, ß-catenin degradation was impaired, which resulted in an induction of the ß-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell-cell and cell-matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell-cell and cell-substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical ß-catenin signaling and Akt activation could be identified as a potential mechanism.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Aderentes/metabolismo , Animais , Apoptose , Adesão Celular , Pontos de Checagem do Ciclo Celular , Morte Celular , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos , beta Catenina/metabolismo
18.
Int J Nanomedicine ; 16: 989-1000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633447

RESUMO

BACKGROUND: Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands. MATERIALS AND METHODS: ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain. RESULTS: Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young's modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition. CONCLUSION: Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair.


Assuntos
Quitosana/farmacologia , Tecido Conjuntivo/fisiologia , Nanotubos de Carbono/química , Engenharia Tecidual , Animais , Fenômenos Biomecânicos , Bovinos , Linhagem Celular , Quitosana/química , Módulo de Elasticidade , Fibroblastos/efeitos dos fármacos , Humanos
19.
Circ Res ; 100(8): 1191-9, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17363702

RESUMO

Heterotrimeric G proteins are pivotal regulators of myocardial contractility. In addition to the receptor-induced GDP/GTP exchange, G protein alpha subunits can be activated by a phosphate transfer via a plasma membrane-associated complex of nucleoside diphosphate kinase B (NDPK B) and G protein betagamma-dimers (Gbetagamma). To investigate the physiological role of this phosphate transfer in cardiomyocytes, we generated a Gbeta1gamma2-dimer carrying a single amino acid exchange at the intermediately phosphorylated His-266 in the beta1 subunit (Gbeta1H266Lgamma2). Recombinantly expressed Gbeta1H266Lgamma2 were integrated into heterotrimeric G proteins in rat cardiomyocytes but were deficient in intermediate Gbeta phosphorylation. Compared with wild-type Gbeta1gamma2 (Gbeta1WTgamma2), overexpression of Gbeta1H266Lgamma2 suppressed basal cAMP formation up to 55%. A similar decrease in basal cAMP production occurred when the formation of NDPK B/Gbetagamma complexes was attenuated by siRNA-mediated NDPK B knockdown. In adult rat cardiomyocytes expressing Gbeta1H266Lgamma2, the basal contractility was suppressed by approximately 50% which correlated to similarly reduced basal cAMP levels and reduced Ser16-phosphorylation of phospholamban. In the presence of the beta-adrenoceptor agonist isoproterenol, the total cAMP formation and contractility were significantly lower in Gbeta1H266Lgamma2 than in Gbeta1WTgamma2 expressing cardiomyocytes. However, the relative isoproterenol-induced increased was not affected by Gbeta1H266Lgamma2. We conclude that the receptor-independent activation of G proteins via NDPK B/Gbetagamma complexes requires the intermediate phosphorylation of G protein beta subunits at His-266. Our results highlight the histidine kinase activity of NDPK B for Gbeta and demonstrate its contribution to the receptor-independent regulation of cAMP synthesis and contractility in intact cardiomyocytes.


Assuntos
AMP Cíclico/biossíntese , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Núcleosídeo-Difosfato Quinase/biossíntese , Subunidades Proteicas/fisiologia , Animais , Linhagem Celular Transformada , AMP Cíclico/genética , AMP Cíclico/fisiologia , Dimerização , Proteínas Heterotriméricas de Ligação ao GTP/biossíntese , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Contração Miocárdica/genética , Nucleosídeo NM23 Difosfato Quinases , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/fisiologia , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Ratos
20.
Circ Res ; 100(6): 864-73, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17322173

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase with emerging myocardial functions; in skinned adult rat ventricular myocytes (ARVMs), recombinant PKD catalytic domain phosphorylates cardiac troponin I at Ser22/Ser23 and reduces myofilament Ca(2+) sensitivity. We used adenoviral gene transfer to determine the effects of full-length PKD on protein phosphorylation, sarcomere shortening and [Ca(2+)](i) transients in intact ARVMs. In myocytes transduced to express wild-type PKD, the heterologously expressed enzyme was activated by endothelin 1 (ET1) (5 nmol/L), as reflected by PKD phosphorylation at Ser744/Ser748 (PKC phosphorylation sites) and Ser916 (autophosphorylation site). The ET1-induced increase in cellular PKD activity was accompanied by increased cardiac troponin I phosphorylation at Ser22/Ser23; this measured approximately 60% of that induced by isoproterenol (10 nmol/L), which activates cAMP-dependent protein kinase (PKA) but not PKD. Phosphorylation of other PKA targets, such as phospholamban at Ser16, phospholemman at Ser68 and cardiac myosin-binding protein C at Ser282, was unaltered. Furthermore, heterologous PKD expression had no effect on isoproterenol-induced phosphorylation of these proteins, or on isoproterenol-induced increases in sarcomere shortening and relaxation rate and [Ca(2+)](i) transient amplitude. In contrast, heterologous PKD expression suppressed the positive inotropic effect of ET1 seen in control cells, without altering ET1-induced increases in relaxation rate and [Ca(2+)](i) transient amplitude. Complementary experiments in "skinned" myocytes confirmed reduced myofilament Ca(2+) sensitivity by ET1-induced activation of heterologously expressed PKD. We conclude that increased myocardial PKD activity induces cardiac troponin I phosphorylation at Ser22/Ser23 and reduces myofilament Ca(2+) sensitivity, suggesting that altered PKD activity in disease may impact on contractile function.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/fisiologia , Troponina I/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/farmacologia , Células Cultivadas , Endotelina-1/farmacologia , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/genética , Ratos , Sarcômeros/efeitos dos fármacos , Sarcômeros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA