RESUMO
HIV-1 expresses several accessory proteins to counteract host anti-viral restriction factors to facilitate viral replication and disease progression. One such protein, Vpr, has been implicated in affecting multiple cellular processes, but its mechanism remains elusive. Here we report that Vpr targets TET2 for polyubiquitylation by the VprBP-DDB1-CUL4-ROC1 E3 ligase and subsequent degradation. Genetic inactivation or Vpr-mediated degradation of TET2 enhances HIV-1 replication and substantially sustains expression of the pro-inflammatory cytokine interleukin-6 (IL-6). This process correlates with reduced recruitment of histone deacetylase 1 and 2 to the IL-6 promoter, thus enhancing its histone H3 acetylation level during resolution phase. Blocking IL-6 signaling reduced the ability of Vpr to enhance HIV-1 replication. We conclude that HIV-1 Vpr degrades TET2 to sustain IL-6 expression to enhance viral replication and disease progression. These results suggest that disrupting the Vpr-TET2-IL6 axis may prove clinically beneficial to reduce both viral replication and inflammation during HIV-1 infection.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , HIV-1/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Monócitos/virologia , Proteínas Proto-Oncogênicas/metabolismo , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Células HEK293 , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/patogenicidade , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Interleucina-6/genética , Células Jurkat , Monócitos/enzimologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases , Proteólise , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Células THP-1 , Ubiquitina-Proteína Ligases , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genéticaRESUMO
Breast cancer is the most frequent malignancy in women worldwide, and triple-negative breast cancer (TNBC) patients have the worst prognosis and highest risk of recurrence. The therapeutic strategies for TNBC are limited. It is urgent to develop new methods to enhance the efficacy of TNBC treatment. Previous studies demonstrated that D-mannose, a hexose, can enhance chemotherapy in cancer and suppress the immunopathology of autoimmune diseases. Here, we show that D-mannose can significantly facilitate TNBC treatment via degradation of PD-L1. Specifically, D-mannose can activate AMP-activated protein kinase (AMPK) to phosphorylate PD-L1 at S195, which leads to abnormal glycosylation and proteasomal degradation of PD-L1. D-mannose-mediated PD-L1 degradation promotes T cell activation and T cell killing of tumor cells. The combination of D-mannose and PD-1 blockade therapy dramatically inhibits TNBC growth and extends the lifespan of tumor-bearing mice. Moreover, D-mannose-induced PD-L1 degradation also results in messenger RNA destabilization of DNA damage repair-related genes, thereby sensitizing breast cancer cells to ionizing radiation (IR) treatment and facilitating radiotherapy of TNBC in mice. Of note, the effective level of D-mannose can be easily achieved by oral administration in mice. Our study unveils a mechanism by which D-mannose targets PD-L1 for degradation and provides methods to facilitate immunotherapy and radiotherapy in TNBC. This function of D-mannose may be useful for clinical treatment of TNBC.
Assuntos
Antígeno B7-H1/metabolismo , Manose/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antígeno B7-H1/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteólise/efeitos dos fármacos , Radioterapia/métodos , Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Cold stress significantly affects gene expression in adipocytes; studying this phenomenon can help reveal the pathogeneses of conditions such as obesity and insulin resistance. Adipocyte triglyceride lipase (ATGL); cell death-inducing deoxyribonucleic acid (DNA) fragmentation factor subunit alpha (DFFA)-like effector (CIDEA); and uncoupling protein genes UCP1, UCP2, and UCP3 are the most studied genes in pig adipose tissues under cold stress. However, contradictory results have been observed in gene expression changes to UCP3 and UCP2 when adipose tissues under cold stress were examined. Therefore, we conducted a meta-analysis of 32 publications in total on the effect of cold stress on the expression of ATGL, CIDEA, UCP2, and UCP3. Our results showed that cold stress affected the expression of swine adipocyte genes; specifically, it was positively correlated with the expression of UCP3 in swine adipocytes. Conversely, expression of ATGL was negatively affected under cold stress conditions. In addition, the loss of functional UCP1 in pigs likely triggered a compensatory increase in UCP3 activity. We also simulated the docking results of UCP2 and UCP3. Our results showed that UCP2 could strongly bind to adenosine triphosphate (ATP), meaning that UCP3 played a more significant role in pig adipocytes.
RESUMO
Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.
RESUMO
In current research on the synthesis of colloidal nanostructures, the size and morphology of nanoparticles still exhibit certain dispersion and variation from batch to batch. Characterization of size distribution and morphology distribution of nanoparticles often requires techniques such as scanning electron microscopy or transmission electron microscopy, which involve high vacuum environments, are time-consuming, and costly. Experienced researchers can roughly estimate the size and distribution of nanostructure from spectra for a given synthetic route, but the accuracy is often limited. This paper reports the potential of using neural networks to accurately predict the composition of colloidal nanostructures from spectra. We address several fundamental issues in neural network prediction of colloidal composition. We first demonstrate the prediction of the composition of a colloidal binary mixture of gold nanoparticles using a gated recurrent neural network (GRU). The evolution of prediction errors for scattering, absorption, and extinction spectra of nanostructures with sizes ranging from 5 to 120 nm are analyzed. Furthermore, we demonstrate that the neural network model operates robustly under white noise in experimental testing scenarios. Compared to fully connected neural networks, the gated recurrent unit exhibits better testing accuracy in spectral prediction. When confronted with experimental data that deviates from simulation outputs, minor adjustments to the training set can allow the predictions to align closely with the experimental spectra, paving the way for the characterization of complex colloidal compositions with artificial intelligence.
RESUMO
BACKGROUND AND AIM: Drug therapy is the treatment of choice for Crohn's disease because it effectively controls or prevents intestinal inflammation. The purpose was to research the molecular mechanism of the total flavones of Abelmoschus manihot (TFA) on intestinal fibrosis in Crohn's disease. METHODS: A 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis model and IGF-1-treated intestinal fibroblasts were established. Then, TFA, 3-MA, and compound C were used treatments. Hematoxylin and eosin, Masson, and Picrosirius red staining were performed to observe the colon tissue. Immunohistochemical staining was used to detect α-SMA expression. Flow cytometry, CCK8, wound healing, and Transwell assays were conducted to determine apoptosis, proliferation, invasion, and migration. Col1a1 and Col3a1 levels were detected using quantitative polymerase chain reaction. Proteins related to autophagy and apoptosis were detected using western blotting. RESULTS: TFA treated intestinal fibrosis in chronic Crohn's disease. Colon length was the shortest in the ethanol + TNBS group, and TFA treatment significantly improved the situation. Intestinal fibrosis and the percentage of collagen area decreased after TFA treatment. TFA reduced fibrosis by enhancing autophagy stimulation, whereas an autophagy inhibitor reversed the TFA effect. TFA also inhibited migration, proliferation, and collagen synthesis in intestinal fibroblasts. Moreover, it enhanced autophagy and apoptosis of intestinal fibroblasts. TFA upregulated p-AMPK expression and decreases p-mTOR levels. Compound C partially rescued the effect of TFA, indicating that TFA affected intestinal fibroblasts via the AMPK/mTOR pathway in vitro and in vivo. TFA also downregulated Col1a1 and Col3a1 expression. CONCLUSION: TFA regulates autophagy through AMPK/mTOR signaling pathway to treat intestinal fibrosis, which may provide a new therapy for Crohn's disease treatment.
Assuntos
Proteínas Quinases Ativadas por AMP , Abelmoschus , Autofagia , Doença de Crohn , Fibrose , Flavonas , Transdução de Sinais , Serina-Treonina Quinases TOR , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Abelmoschus/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Flavonas/farmacologia , Flavonas/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , Ácido Trinitrobenzenossulfônico , Modelos Animais de Doenças , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Humanos , Células CultivadasRESUMO
BACKGROUND: Atherosclerosis may be linked to morphological defects that lead to variances in coronary artery hemodynamics. Few objective strategies exit at present for generalizing morphological phenotypes of coronary arteries in terms of hemodynamics. We used unsupervised clustering (UC) to classify the morphology of the left main coronary artery (LM) and looked at how hemodynamic distribution differed between phenotypes. METHODS: In this study, 76 LMs were obtained from 76 patients. After LMs were reconstructed with coronary computed tomography angiography, centerlines were used to extract the geometric characteristics. Unsupervised clustering was carried out using these characteristics to identify distinct morphological phenotypes of LMs. The time-averaged wall shear stress (TAWSS) for each phenotype was investigated by means of computational fluid dynamics (CFD) analysis of the left coronary artery. RESULTS: We identified four clusters (i.e., four phenotypes): Cluster 1 had a shorter stem and thinner branches (n = 26); Cluster 2 had a larger bifurcation angle (n = 10); Cluster 3 had an ostium at an angulation to the coronary sinus and a more curved stem, and thick branches (n = 10); and Cluster 4 had an ostium at an angulation to the coronary sinus and a flatter stem (n = 14). TAWSS features varied widely across phenotypes. Nodes with low TAWSS (L-TAWSS) were typically found around the branching points of the left anterior descending artery (LAD), particularly in Cluster 2. CONCLUSION: Our findings demonstrated that UC is a powerful technique for morphologically classifying LMs. Different LM phenotypes exhibited distinct hemodynamic characteristics in certain regions. This morphological clustering method could aid in identifying people at high risk for developing coronary atherosclerosis, hence facilitating early intervention.
Assuntos
Vasos Coronários , Coração , Humanos , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Hemodinâmica , FenótipoRESUMO
BACKGROUND: IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS: The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS: We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS: Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.
Assuntos
Proteína HMGB1 , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , MicroRNAs/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Metilação de DNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Inflamação/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Mamíferos/genéticaRESUMO
BACKGROUND: Elderly patients often experience severe pain during percutaneous kyphoplasty under local anaesthesia. The aim of this work was to evaluate the effect of lidocaine combined with esketamine on pain improvement in elderly patients receiving local anaesthesia via percutaneous kyphoplasty. METHODS: This prospective, randomized comparative trial was conducted on 66 elderly patients, aged 60-80 years, with an American Society of Anaesthesiologists (ASA) grade of I-III, IâIII and a BMI of 18.5-25 kg/m2, who underwent single-level lumbar percutaneous kyphoplasty under local anaesthesia. Patients were divided into two equal groups (33 per group). Group LE received 200 mg of 1% lidocaine and 25 mg of esketamine (total volume of 20 ml), and Group L received 200 mg of 1% lidocaine (total volume of 20 ml). Patient characteristics, surgery, VAS scores, MAP, HR, MOAA/S scores, patient satisfaction and related adverse reactions were compared for the groups. The VAS scores during and after surgery were considered the primary outcome. RESULTS: There were statistically significant differences in the VAS score between the two groups at the following time points: channel establishment by the puncture needle, balloon dilation, bone cement injection and postoperative period (P < 0.05). The VAS score decreased in the LE group, but the MAP and HR were more stable, and the difference was statistically significant (P < 0.05). The difference in the MOAA/S score between the two groups was statistically significant (P < 0.05), and the MOAA/S score in the LE group decreased. The patient satisfaction level in the LE group was 100% and 48.48% in the L group (P < 0.05). There were no related complications or adverse reactions in either group. CONCLUSION: The application of lidocaine combined with esketamine in local episcopal percutaneous vertebral kyphoplasty in elderly patients not only provides an effective analgesic effect but also improves surgical safety and patient comfort, which has important clinical value in promoting the optimization of surgical anaesthesia management in elderly patients. TRIAL REGISTRATION: The study was registered at Chictr.org.cn with the number ChiCTR2400083466 on 06/12/2023.
Assuntos
Anestesia Local , Anestésicos Locais , Ketamina , Cifoplastia , Lidocaína , Humanos , Idoso , Cifoplastia/métodos , Feminino , Masculino , Lidocaína/administração & dosagem , Estudos Prospectivos , Anestésicos Locais/administração & dosagem , Ketamina/administração & dosagem , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Anestesia Local/métodos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Quimioterapia Combinada , Medição da DorRESUMO
Renal fibrosis is the major pathological changes of Chronic kidney disease (CKD). Piezo1, a mechanical sensitive ion channel, is implicated in organ fibrosis. However, the precise role of Piezo1 in CKD fibrosis is unknown. The aims of this study were to identify that the role of Piezo1 in CKD fibrosis and its potential involvement of mitochondrial dysfunction. We performed the study with the Piezo1 agonist Yoda1, Bax inhibitor BAI1, Piezo1 inhibitor GsMTx4 and detected the injury, fibrosis, apoptosis markers and mitochondrial dysfunction. The results showed that the levels of apoptosis, mitochondrial dysfunction, injury and fibrosis increased in TCMK-1 cells after treatment with Yoda1. However, these changes that induced by Yoda1 were relieved by BAI1. Similarly, inhibition Piezo1 with GsMTx4 also partly relieved the renal injury, renal fibrosis, apoptosis and mitochondrial dysfunction in vivo and vitro. In conclusion, we found Piezo1 promoted the initiation and development of renal fibrosis and inhibiting Piezo1 improved the fibrosis.
Assuntos
Apoptose , Fibrose , Canais Iônicos , Mitocôndrias , Insuficiência Renal Crônica , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Masculino , Camundongos , Rim/patologia , Progressão da Doença , Humanos , Linhagem Celular , Modelos Animais de Doenças , Pirazinas , TiadiazóisRESUMO
BACKGROUND: Periodontitis is a chronic inflammatory disease characterized by the destruction of the components of the periodontium. It significantly impacts oral health and has been linked to systemic conditions like cardiovascular disease and diabetes. The critical role of neutrophils in the occurrence and development of chronic periodontitis has been paid increasing attention. The study aimed to explore the protective effects of D-mannose on chronic periodontitis and determine whether its underlying mechanisms is related to neutrophils. METHODS: To explore the protective effects of D-mannose on chronic periodontitis, the eight-week-old Sprague Dawley rat model of lipopolysaccharide (LPS)-induced periodontitis was established, followed by D-mannose treatment by oral gavage. To evaluate the protective effects of D-mannose against periodontal bone loss, methylene blue staining, hematoxylin and eosin (H&E) staining, and micro-CT scanning were utilized. Then, immunofluorescence (IF), Western Blot, and RT-PCR were applied to assess the expression levels of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-17), anti-inflammatory cytokine (IL-10), tumor necrosis factor-alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), ten-eleven translocation 2 (TET2), and key glycolytic enzymes (HK1, HK2, PFKFB3), and to examine D-mannose's impact on the recruitment and activation of neutrophils in the gingiva. Additionally, neutrophils isolated from the peripheral blood of healthy rats were treated with LPS and D-mannose, and changes in the expression levels of myeloperoxidase (MPO), IL-1ß, IL-6, IL-17, IL-10, and TET2 were observed via IF. RESULTS: In vivo, D-mannose inhibited LPS-induced alveolar bone resorption in rats. After D-mannose treatment, the expression levels of IL-17 (p<0.01) and TET2 (p<0.01) were suppressed by IF, and the expression levels of IL-1ß (p<0.05), IL-17 (p<0.05) and TET2 (p<0.01) were downregulated by WB. The results of qPCR showed that D-mannose reduced the expression levels of IL-1ß (p<0.05), IL-6 (p<0.01), IL-17 (p<0.01), TNF-α (p<0.01), G-CSF (p<0.01), GM-CSF (p<0.01), TET2 (p<0.01), HK1 (p<0.01), HK2 (p<0.01), and PFKFB3 (p<0.01). D-mannose also inhibited the recruitment and activation of neutrophils in LPS-treated rat gingival tissues. In vitro, the results of IF showed that D-mannose inhibited the activation of neutrophils stimulated by LPS, downregulated the expression of IL-1ß (p < 0.05), IL-6, IL-17 (p < 0.01), and TET2 (p < 0.01), and upregulated the expression of IL-10 (p < 0.01). CONCLUSIONS: D-mannose can alleviate chronic periodontitis in rats by regulating the functions of neutrophils, potentially associated with the expression of TET2 and glycolysis, providing new insights into the potential application of D-mannose to chronic periodontitis.
Assuntos
Periodontite Crônica , Lipopolissacarídeos , Manose , Neutrófilos , Ratos Sprague-Dawley , Animais , Ratos , Neutrófilos/efeitos dos fármacos , Periodontite Crônica/tratamento farmacológico , Manose/farmacologia , Manose/uso terapêutico , Citocinas/metabolismo , Masculino , Modelos Animais de Doenças , Microtomografia por Raio-X , Perda do Osso Alveolar/prevenção & controleRESUMO
Malignant pleural effusion (MPE), which is a complex microenvironment that contains numerous immune and tumour signals, is common in lung cancer. Gene alterations, such as driver gene mutations, are believed to affect the components of tumour immunity in the microenvironment (TIME) of non-small-cell lung cancer. In this study, we have shown that pleural CD39 + CD8 + T cells are selectively elevated in lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFRwt) compared to those with newly diagnosed mutant EGFR (EGFRmu). Furthermore, these CD39 + CD8 + T cells are more prevalent in MPE with acquired resistance to EGFR-tyrosine kinase inhibitors (AR-EGFR-TKIs). Our analysis reveals that pleural CD39 + CD8 + T cells exhibit an exhausted phenotype while still retaining cytolytic function. Additionally, they have a higher T cell receptor (TCR) repertoire clonality compared to CD39-CD8 + T cells, which is a unique characteristic of LUAD-related MPE. Further investigation has shown that TCR-Vß clonality tends to be more enhanced in pleural CD39 + CD8 + T cells from MPE with AR-EGFR-TKIs. In summary, we have identified a subset of CD8 + T cells expressing CD39 in MPE, which may potentially be tumour-reactive CD8 + T cells. This study provides new insights into the dynamic immune composition of the EGFRmu tumour microenvironment.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Receptores ErbB/genética , Receptores de Antígenos de Linfócitos T , Microambiente TumoralRESUMO
Inbreeding depression refers to the reduced fitness of offspring produced by genetically-related individuals and is expected to be rare in large, outbred populations. When it occurs, marked fitness loss is possible as large populations can carry a substantial load of recessive harmful mutations which are normally sheltered at the heterozygous state. Using experimental cross data and genome-wide identity-by-descent (IBD) relationships from an outbred marine nine-spined stickleback (Pungitius pungitius) population, we documented a significant decrease in offspring survival probability with increasing parental IBD sharing associated with an average inbreeding load (B) of 10.5. Interestingly, we found that this relationship was also underlined by a positive effect of paternal inbreeding coefficient on offspring survival, suggesting that certain combinations of parental inbreeding and genetic relatedness among mates may promote offspring survival. Our results demonstrate the potential for substantial inbreeding load in an outbred population and emphasize the need to consider fine-scale genetic relatedness in future studies of inbreeding depression in the wild.
Assuntos
Depressão por Endogamia , Humanos , Depressão por Endogamia/genética , Endogamia , Mutação , Genoma , HeterozigotoRESUMO
The fidelity of a speech signal deteriorates severely in a distributed acoustic sensing (DAS) system due to the influence of the random noise. In order to improve the measurement accuracy, we have theoretically and experimentally compared and analyzed the performance of the speech signal with and without a recognition and reconstruction method-based deep learning technique. A complex convolution recurrent network (CCRN) algorithm based on complex spectral mapping is constructed to enhance the information identification of speech signals. Experimental results show that the random noise can be suppressed and the recognition capability of speech information can be strengthened by the proposed method. The random noise intensity of a speech signal collected by the DAS system is attenuated by approximately 20â dB and the average scale-invariant signal-to-distortion ratio (SI-SDR) is improved by 51.97â dB. Compared with other speech signal enhancement methods, the higher SI-SDR can be demonstrated by using the proposed method. It has been effective to accomplish high-fidelity and high-quality speech signal enhancement in the DAS system, which is a significant step toward a high-performance DAS system for practical applications.
RESUMO
BACKGROUND: Urinary tract obstruction is associated with impaired renal urinary concentration; even after the release of the obstruction, patients still suffer from polyuria. It has been reported that the decreased expression of aquaporins (AQPs) is associated with postobstructive polyuria, and erythropoietin (EPO) can promote the recovery of decreased AQP2 expression induced by bilateral ureteral obstruction. However, whether EPO can promote the recovery of the expression of AQP1-3 after the release of unilateral ureteral obstruction (UUO) has not yet been reported. AIMS: To investigate the effects of EPO treatment on the expression of renal AQP1-3 after the release of UUO. METHODS: UUO was established in rats by 24-h temporary unilateral obstruction of renal ureters. Three days following EPO treatment, the kidneys were removed to determine the expression levels of AQP1-3, NLRP3, caspase-1, and IL-1ß via semiquantitative immunoblotting and immunohistochemistry. RESULTS: EPO inhibited the expression of NLRP3, caspase-1, and IL-1ß; reduced plasma creatinine and urea; and promoted the recovery of AQP1-3 expression in UUO rats. CONCLUSIONS: EPO treatment prevented the decreased expression of renal AQPs and the development of impaired urinary concentration capacity after the release of UUO, which may partially occur by way of anti-inflammasome effects. IMPACT: EPO treatment could prevent the decreased expression of renal water transporter proteins AQP1-3 and the development of impaired renal functions, which may be associated with its anti-inflammasome effects. EPO regulated the expression of renal water transporter proteins AQP1-3, which could provide the potential for the treatment of postobstructive polyuresis. EPO treatment could be one of the effective methods by participating in multiple dimensions for patients with obstructive nephropathy.
Assuntos
Eritropoetina , Ureter , Obstrução Ureteral , Ratos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Ureter/metabolismo , Aquaporina 2/metabolismo , Poliúria/complicações , Poliúria/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Rim/metabolismo , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Água , Caspases/metabolismo , Caspases/farmacologiaRESUMO
BACKGROUND: Urinary tract obstruction is a common cause of renal failure in children and infants, and the pathophysiological mechanisms of obstructive nephropathy are largely unclear. It has been reported that m6A modulation is involved in renal injury. However, whether m6A RNA modulation is associated with obstructive nephropathy has not yet been reported. The aim of this study was to investigate the m6A epitranscriptome profiles in the kidneys of bilateral ureteral obstruction (BUO) in young rats. METHODS: The total level of m6A in the kidneys was measured by liquid chromatography-tandem mass spectrometry. The mRNAs of related genes were detected by real-time PCR. Methylated RNA immunoprecipitation sequencing was performed to map the epitranscriptome-wide m6A profile. RESULTS: Global m6A levels were increased after BUO, and the mRNA expression levels of m6A methyltransferases and demethylases were significantly decreased in BUO group rat kidneys; the expression levels of EGFR and Brcal were significantly upregulated, while the mRNA expression levels of Notch1 were downregulated (P < 0.05). A total of 154 genes associated with 163 m6A peaks were identified. CONCLUSION: The m6A epitranscriptome was significantly altered in BUO rat kidneys, which is potentially implicated in the pathophysiological processes of obstructive nephropathy. IMPACT: The m6A RNA modification was associated with the process of renal injury in ureteral obstructive nephropathy by participating in multiple dimensions. The dysregulation of m6A methyltransferases and demethylases may be related to the pathophysiological changes of BUO-induced obstructive nephropathy. The m6A RNA modulation of the genes EGFR, Brca1, and Notch1 that were related to the regulation of aquaporin2 might be the potential mechanism for the polyuresis after ureteral obstruction.
Assuntos
Nefropatias , Obstrução Ureteral , Ratos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Nefropatias/genética , RNA/genética , RNA Mensageiro/genética , Metiltransferases/genética , Receptores ErbBRESUMO
DNA methylation at the C-5 position of cytosine (5mC) regulates gene expression and plays pivotal roles in various biological processes. The TET dioxygenases catalyze iterative oxidation of 5mC, leading to eventual demethylation. Inactivation of TET enzymes causes multistage developmental defects, impaired cell reprogramming, and hematopoietic malignancies. However, little is known about how TET activity is regulated. Here we show that all three TET proteins bind to VprBP and are monoubiquitylated by the VprBP-DDB1-CUL4-ROC1 E3 ubiquitin ligase (CRL4(VprBP)) on a highly conserved lysine residue. Deletion of VprBP in oocytes abrogated paternal DNA hydroxymethylation in zygotes. VprBP-mediated monoubiquitylation promotes TET binding to chromatin. Multiple recurrent TET2-inactivating mutations derived from leukemia target either the monoubiquitylation site (K1299) or residues essential for VprBP binding. Cumulatively, our data demonstrate that CRL4(VprBP) is a critical regulator of TET dioxygenases during development and in tumor suppression.
Assuntos
Proteínas de Transporte/fisiologia , Cromatina/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Domínio Catalítico , Proteínas de Ligação a DNA/genética , Dioxigenases/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , Ubiquitina-Proteína LigasesRESUMO
The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas WT1/fisiologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismoRESUMO
3-Chloro-1,2-propanediol is a common food contaminant, but reports on its determination in biological tissues are lacking. In the present study, a method was developed to detect 3-chloro-1,2-propanediol contents in rat tissues by quick-easy-cheap-effective-rugged-and-safe extraction and gas chromatography-mass spectrometry analysis. Biological samples were extracted with ethyl acetate and purified with adsorbents. The optimized adsorbent for each sample was selected from 4-5 combinations of N-propylethylenediamine, octadecylsilane, graphitized carbon black, strong anion exchange, and florisil. Extracted 3-chloro-1,2-propanediol was derivatized with heptafluorobutyric anhydride and subjected to gas chromatography-mass spectrometry. This method had good linearity (correlation coefficients >0.99) in the range of 2-2000 ng/g for blood, kidney, liver, testis, and brain samples. The limits of detection were under 0.8 ng/g; the limits of quantification were 2 ng/g; the recovery rates were 85%-102%; and the matrix effects were 1.98%-7.67%. This method also had good precision. The dynamic changes in 3-chloro-1,2-propanediol in rats gavaged with 20 mg/kg b.w. for 24 h were detected using this method. The 3-chloro-1,2-propanediol content in each tissue sharply increased to a peak, rapidly decreased within 2 h, and stabilized at 12 h. 3-Chloro-1,2-propanediol persisted in the kidney, testis, and liver 24 h after gavage.
Assuntos
Espectrometria de Massas em Tandem , alfa-Cloridrina , Animais , Ratos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual , Fígado , Extração em Fase SólidaRESUMO
OBJECTIVES: To investigate the actions of amlodipine-folic acid (amlodipine-FA) preparation on hypertension and cardiovascular in renal hypertensive rats with hyperhomocysteinemia (HHcy), so as to provide experimental basis for clinical research of amlodipine folic acid tablets. METHODS: Rats model of renal hypertension with HHcy were established. The rats were randomly divided into groups of model, amlodipine, folic acid (FA) and amlodipine-FA of various dosages. Normal rats were used as normal control group. Blood pressure, Hcy as well as plasma NO, ET-1 and hemodynamics were assayed. Histological alterations of heart and abdominal aorta were also examined. RESULTS: Compared with the normal group, blood pressure, plasma Hcy, and NO of the rats in model group were significantly increased, while the plasma ET-1 was decreased. Compared with the normal group, the animals in the model group had reduced cardiac function, thickened wall of the aorta and narrowed lumen. In FA group and amlodipine group, the rat plasma NO was increased while ET-1 was decreased, the protective effect of amlodipine-FA group on endothelial cells was further enhanced. In amlodipine group, the rat hemodynamics (LVSP, LVEDP and ±dp/dtmax, et al.) and vascular damage were significantly reduced, while in amlodipine-FA group, the heart function were further improved, and myocardial and vascular hypertrophy were significantly reduced. CONCLUSIONS: As compared to amlodipine alone, amlodipine -FA can lower both blood pressure and plasma Hcy, significantly enhancing vascular endothelial function to protect the heart and blood vessel in renal hypertensive rats with HHcy.