Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(8): 2818-2823, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32197041

RESUMO

We study the bouncing dynamics of nanodroplets on superhydrophobic surfaces. We show that there are three velocity regimes with different scaling laws of the contact time, τ. Although τ remains constant over a wide velocity range, as seen for macroscale bouncing, we demonstrate that viscosity plays an essential role in nanodroplet bouncing even for low-viscosity fluids. We propose a new scaling τ ∼ (ρµR04/γ2)1/3 = (R0/v0)We2/3Re-1/3 to characterize the viscosity effect, which agrees well with the simulated results for water and argon nanodroplets with various radii and hydrophobicities. We also find pancake bouncing of nanodroplets, which is responsible for an abruptly reduced τ in a high-velocity regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA