Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 260(3): 65, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073585

RESUMO

MAIN CONCLUSION: This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.


Assuntos
Adenosina , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Transcriptoma , Triticum , Triticum/genética , Triticum/fisiologia , Metilação , Adenosina/análogos & derivados , Adenosina/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 13(3): 2973-2984, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489137

RESUMO

MicroRNAs (miRNAs) are a class of endogenous RNAs that regulates the gene expression involved in various biological and metabolic processes. Barley is one of the most important cereal crops worldwide and is a model organism for genetic and genomic studies in Triticeae species. However, the miRNA research in barley has lagged behind other model species in grass family. To obtain more information of miRNA genes in barley, we sequenced a small RNA library created from a pool of equal amounts of RNA from four different tissues using Solexa sequencing. In addition to 126 conserved miRNAs (58 families), 133 novel miRNAs belonging to 50 families were identified from this sequence data set. The miRNA* sequences of 15 novel miRNAs were also discovered, suggesting the additional evidence for existence of these miRNAs. qRT-PCR was used to examine the expression pattern of six randomly selected miRNAs. Some miRNAs involved in drought and salt stress response were also identified. Furthermore, the potential targets of these putative miRNAs were predicted using the psRNATarget tools. Our results significantly increased the number of novel miRNAs in barley, which should be useful for further investigation into the biological functions and evolution of miRNAs in barley and other species.


Assuntos
Hordeum/genética , MicroRNAs/genética , RNA de Plantas/genética , Biologia Computacional , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
3.
Ecol Evol ; 10(11): 4518-4530, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551041

RESUMO

Tree peony (Paeonia Sect. Moutan) is a famous ornamental plant, with huge historical, cultural, and economic significance worldwide. In this study, we reported the ~13.79 Gb draft genome of a wide-grown Paeonia suffruticosa cultivar "Luo shen xiao chun," representing the largest sequenced genome in dicots to date. Phylogenetic analyses based on genome sequences demonstrated that P. suffruticosa was placed as sister to Vitales, and they together formed a clade that was sister to Rosids, weakly supporting a relationship of ((Saxifragales and Vitales) and Rosids). The identification and expression analysis of MADS-box genes based on the genome assembly and de novo transcriptome assembly of P. suffruticosa revealed that the function of C class genes was restricted in flower development, which might be responsible for the stamen petalody in tree peony cultivars. Overall, the first sequenced genome in the family Paeoniaceae provides an important resource for the origin, domestication, and evolutionary study as well as cultivar breeding in tree peony.

4.
PLoS One ; 7(5): e36869, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606302

RESUMO

BACKGROUND: Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. CONCLUSION: We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.


Assuntos
Ageratina/genética , Genoma de Cloroplastos , Ageratina/classificação , Mapeamento Cromossômico , Códon/genética , DNA de Cloroplastos/genética , Evolução Molecular , Éxons , Espécies Introduzidas , Íntrons , Sequências Repetidas Invertidas , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA