Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 9(8): 1034-1038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135641

RESUMO

Typha angustifolia, commonly known as narrowleaf cattail, is a marginal, semi-aquatic, herbaceous perennial species with both ecological and edible values. In this study, the complete chloroplast (cp) genome of T. angustifolia was assembled using the next-generation sequencing technology. The whole cp genome was 161,597 bp in length, consisting of a large single copy (LSC, 89,119 bp) and a small single copy (SSC, 18,550 bp) separated by two copies of inverted region (IR, 26,964 bp). The genome encoded 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, four rRNA genes, with 19 duplicated genes in the IR regions. Phylogenetic analysis showed that T. angustifolia is sister to Typha orientalis in the family Typhaceae. The cp genome of T. angustifolia is reported for the first time, which will provide essential and important genetic resources for future phylogenetic investigation within the genus Typha.

2.
Front Physiol ; 15: 1397818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720786

RESUMO

To investigate the impact of the effect of high temperature stimulation on Monopterus albus larvae after a certain period of time, five experimental groups were established at different temperatures. Then, the M. albus under high temperature stress was fed at 30°C for 70 days. After that, the growth index of the M. albus was counted and analyzed. In terms of growth index, high temperature stress had significant effects on FCR, FBW, WGR, and SGR of M. albus (p < 0.05). The SR increased after being stimulated by temperature (p < 0.1). The study revealed that liver cells of M. albus were harmed by elevated temperatures of 36°C and 38°C. In the experimental group, the activities of digestive enzymes changed in the same trend, reaching the highest point in the 32°C group and then decreasing, and the AMS activity in the 38°C group was significantly different from that in the 30°C group (p < 0.05). The activities of antioxidase in liver reached the highest at 34°C, which was significantly different from those at 30°C (p < 0.05). In addition, the expression levels of TLR1, C3, TNF-α, and other genes increased in the experimental group, reaching the highest point at 34°C, and the expression level of the IL-1ß gene reached the highest point at 32°C, which was significantly different from that at 30°C (p < 0.05). However, the expression level of the IRAK3 gene decreased in the experimental group and reached its lowest point at 34°C (p < 0.05). The expression level of the HSP90α gene increased with the highest temperature stimulus and reached its highest point at 38°C (p < 0.05). In the α diversity index of intestinal microorganisms in the experimental group, the observed species, Shannon, and Chao1 indexes in the 34°C group were the highest (p < 0.05), and ß diversity analysis revealed that the intestinal microbial community in the experimental group was separated after high temperature stimulation. At the phylum level, the three dominant flora are Proteus, Firmicutes, and Bacteroides. Bacteroides and Macrococcus abundance increased at the genus level, but Vibrio and Aeromonas abundance decreased. To sum up, appropriate high-temperature stress can enhance the immunity and adaptability of M. albus. These results show that the high temperature stimulation of 32°C-34°C is beneficial to the industrial culture of M. albus.

3.
Front Immunol ; 15: 1411544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915412

RESUMO

Fish intestinal health under intensive aquaculture mode plays an important role in growth, development, and immune function. The present study was aimed to systematically investigate the differences of intestinal health between wild and cultured Monopterus albus by biochemical parameters, histomorphology, and molecular biology. A total of 15 healthy M. albus per group, with an average body weight of 45 g, were sampled to analyze intestinal health parameters. Compared with wild fish, the cultured M. albus in the foregut had lower trypsin, lipase, SOD, CAT, T-AOC, and GSH-Px activities (P < 0.05) and higher amylase activity and MDA content (P < 0.05). The villus circumference and goblet cells in the cultured group were significantly lower than those in the wild group (P < 0.05). In addition, the cultured fish showed lower relative expression levels of occludin, zo-1, zo-2, claudin-12, claudin-15, mucin5, mucin15, lysozyme, complement 3, il-10, tgf-ß1, tgf-ß2, and tgf-ß3 (P < 0.05) and higher il-1ß, il-6, il-8, tnf-a, and ifnγ mRNA expressions than those of wild fish (P < 0.05). In terms of gut microbiota, the cultured group at the phylum level displayed higher percentages of Chlamydiae and Spirochaetes and lower percentages of Firmicutes, Bacteroidetes, Actinobacteria, Cyanobacteria, and Verrucomicrobia compared to the wild group (P < 0.05). At the genus level, higher abundances of Pseudomonadaceae_Pseudomonas and Spironema and lower abundances of Lactococcus and Cetobacterium were observed in the cultured group than in the wild group (P < 0.05). To our knowledge, this is the first investigation of the intestinal health status between wild and cultured M. albus in terms of biochemistry, histology, and molecular biology levels. Overall, the present study showed significant differences in intestinal health between wild and cultured M. albus and the main manifestations that wild M. albus had higher intestinal digestion, antioxidant capacity, and intestinal barrier functions than cultured M. albus. These results would provide theoretical basis for the subsequent upgrading of healthy aquaculture technology and nutrient regulation of intestinal health of cultured M. albus.


Assuntos
Aquicultura , Microbioma Gastrointestinal , Intestinos , Smegmamorpha , Animais , Intestinos/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Citocinas/metabolismo , Animais Selvagens
4.
Front Physiol ; 15: 1403391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938746

RESUMO

Monopterus albus is one of China's renowned and superior aquaculture species, with its seedlings mainly sourced from wild capture. One of the bottlenecks in M. albus aquaculture is the high mortality rate and low feeding initiation rate from stocking wild fry to the initiation of feeding. In production, trash fish is commonly used to wean M. albus juveniles onto feeding. In this study, we introduced three other natural feeds, earthworms (EW), yellow mealworms (YMW), and fly maggots (FM), with frozen trash fish (TF) serving as the control group, to evaluate the effects of these four natural feeds on the survival rate, feeding initiation, antioxidant enzymes activity, and body composition of M. albus juveniles under recirculating water aquaculture conditions. The experiment comprised four treatments, each with three replicates. Each replicate consisted of stocking 150 M. albus juveniles weighing 10.02 ± 0.89 g in size, raised for 5 weeks. The survival rate of the YMW group was 73.33%-85.33%, which was significantly higher than that of the other three bait groups (p < 0.05). The four bait groups showed no significant differences in final body weight and specific growth rate (SGR) (p > 0.05). The EW group showed the highest final body weight, with an average SGR of 2.73, whereas the YMW group had an average SGR of 1.87. The average daily feeding amount was significantly higher in EW and YMW groups than in the other two groups (p < 0.05). The percentage of feeding amount to fish weight in the EW group reached 7.3% in the fifth week. After 5 weeks of cultivation, NO2 --N content was significantly higher in the waters of the TF and EW groups than in the waters of the FM and YMW groups (p < 0.05), there was no significant difference in TAN content among the treatment groups (p > 0.05). Liver malondialdehyde content was significantly higher in the TF group than in the other bait groups (p < 0.05). GSH-Px activity was significantly higher in the EW group than in the FM group and YMW group. No significant differences in SOD and CAT activity and T-AOC were observed among the bait groups (p > 0.05). The increase in crude protein content was significantly higher in the TF group than in the FM group, but the increase in crude ash content was significantly lower in the TFgroup. In conclusion, Tenebrio molitor could potentially serve as one of the alternative feeds during the initial stages of M. albus juveniles stocking.

5.
Foods ; 13(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38890979

RESUMO

The present study aimed to systematically investigate the underlying differences in flesh quality between wild and farmed Monopterus albus. Fifteen healthy M. albus per group with an average body weight of 45 g were sampled to analyze muscle parameters by biochemical indicators, histomorphology, and molecular biology. Compared with the wild fish, the farmed M. albus in flesh had lower crude protein, collagen, lysine, histidine, total amino acids, SFA, n-3 PUFA contents, and n-3/n-6 ratio (p < 0.05), and higher moisture, crude lipid, crude ash, MUFA, n-6PUFA, and total PUFA contents (p < 0.05). The thawing loss, drip loss, steaming loss, and boiling loss in the farmed group were significantly higher, and hardness, springiness, cohesiveness, gumminess, chewiness, and resilience were significantly lower than those in the wild group (p < 0.05). In addition, higher muscle fiber density and lower muscle fiber diameter were observed in wild M. albus (p < 0.05). In muscle transcriptome profiling, differentially expressed genes and enriched pathways are primarily associated with muscle development, protein synthesis, catabolism, lipid metabolism, and immunity. To the best of our knowledge, this is the first investigation that compares the flesh quality between wild and farmed M. albus in terms of biochemistry, histology, and molecular biology levels. Overall, wild M. albus had a higher nutritional value and texture quality than farmed M. albus.

6.
Sci Total Environ ; 931: 172962, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705306

RESUMO

Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 µg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.


Assuntos
Ácidos Alcanossulfônicos , Antioxidantes , Astacoidea , Fluorocarbonos , Microbioma Gastrointestinal , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia , Astacoidea/microbiologia , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Glutationa Transferase/metabolismo
7.
Sci Total Environ ; : 175680, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173758

RESUMO

We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 µg/L; Low: 100 µg/L; Medium: 500 µg/L; and High: 1000 µg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P < 0.05) but significantly increased malondialdehyde content (MDA) (P < 0.05) in NP-treated groups. By analyzing different metabolic indicators, total cholesterol (T-CHO) content significantly increased (P < 0.05) and triglyceride (TG) content significantly decreased in Medium and High (P < 0.05). Transcriptomic analyses revealed that NPs influenced apoptosis, drug metabolism-cytochrome P450, and P53 signaling pathways. Metabolomic analyses indicated some metabolic processes were affected by NPs, including bile secretion, primary bile acid biosynthesis, and cholesterol metabolism. Caspase 3, 8, and 9 distribution levels in hepatopancreatic tissues were also determined by immunofluorescence; positive caspase staining increased with increased NP concentrations. Additionally, by examining relative Bcl-2, Bax, Apaf-1, and p53 mRNA expression levels, Bcl-2 expression was significantly decreased with increasing NP concentrations; and the expression of Bcl-2 was increasing significantly with the NPs concentration increasing. Bax expression in Low, Medium, and High groups was also significantly higher when compared with the CK group (P < 0.05); with High group levels significantly higher than in Low and Medium groups (P < 0.05). P53 expression was significantly increased in Low, Medium, and High groups (P < 0.05). Thus, NPs induced apoptosis in C. quadricarinatus hepatopancreatic cells, concomitant with increasing NP concentrations. Therefore, we identified mechanisms underpinning NP toxicity in C. quadricarinatus and provide a theoretical basis for exploring NP toxicity in aquatic organisms.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38870552

RESUMO

The objective was to assess the impact of melatonin supplementation on the growth performance and intestinal health of rice field eel, Monopterus albus. Three hundred and sixty fish (28.46 ± 0.24 g) were fed five diets supplemented with melatonin of 0, 30, 60, 120, and 240 mg/kg for 70 days. The study found that the variables FBW, WGR, SGR, and FCR exhibited a statistically significant quadratic relationship (P < 0.05) with the dietary melatonin concentrations, and the highest FBW, WGR and SGR as well as lowest FCR were observed in the 120 mg/kg melatonin group, digestive enzymes activities (such as amylase, trypsin, and lipase) also had significant quadratic relationship (P < 0.05), and the highest intestinal villus height and goblet cells were found in the 120 mg/kg diet (P < 0.01), melatonin in diets significantly increased SOD and CAT activities in serum, up-regulated the expression of anti-inflammatory factors (IL-10) and tight junction protein (ZO-1), and down-regulated the expression of pro-inflammatory factors (IL-1ß, IL-8, IL-15, and TNF-α) in the gut, dietary melatonin improved the intestinal microflora compositions, in the group that supplementation a dosage of 120 mg/kg, there was a noticeable rise in the abundance of Firmicutes and the ratio of Firmicutes/Bacteroidota, compared with control group (P < 0.1). Conclusively, dietary supplementation of melatonin promoted growth performance, enhanced intestinal immune capacity and serum antioxidant level, and improved intestinal morphology properties and intestinal flora composition in M. albus. In conclusion, based on quadratic broken-line regression analysis of WGR and FCR, the optimal concentration of melatonin to be supplied is predicted to be 146-148 mg/kg.

9.
Foods ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063375

RESUMO

This study aimed to evaluate the impact of substituting a portion of feed with Tenebrio molitor (TM) and Elodea nuttallii (EN) on crayfish culture. A total of 270 crayfish (5.1 ± 0.4 g) were fed three different diet combinations (A: 100% feed; B: 80% feed + 10% TM + 10% EN; C: 75% feed + 15% TM + 10% EN) for 12 weeks. The findings demonstrated that group C had an important beneficial impact on the growth performance of crayfish. This was evidenced by a rise in digestive enzyme activity (trypsin, lipase, and cellulase) in the intestinal and hepatopancreas, as well as an upregulation in the expression of growth-related genes (ghsr, igfbp7, mhc, mlc1, mef2, and pax7) in the muscle. Furthermore, the assessment of the flesh quality of crayfish muscle in group C was conducted. The findings indicated a significant increase (p < 0.05) in the energy value (moisture, crude protein, and crude lipid) within the muscle. The levels of delicious amino acids (Glu, Ala, Ser, Gly, and Tyr) and polyunsaturated fatty acids (ARA, DHA) were enhanced, resulting in an improved nutritional profile and flavor of the muscle while maintaining the Σn-3/Σn-6 ratio. The remodeling of the intestinal microbiota (abundance of Proteobacteria and ratio of Firmicutes/Bacteroidota bacteria) also revealed improved growth performance. Additional research is necessary to ascertain whether excessive use of TM or EN feed substitution can have negative effects on crayfish culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA