Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 90(12): 7302-7309, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792683

RESUMO

Two-dimensional mass spectrometry (2DMS) allows data independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors without isolation prior to fragmentation. Developments in computer capabilities and implementations in Fourier transform ion cyclotron resonance (FTICR) MS over the past decade have allowed the technique to become a useful analytical tool for bottom-up proteomics (BUP) and, more recently, in top-down protein analysis (TDP). In this work, a new method of TDP is developed using 2D FTICR MS, called MS/2D FTICR MS or MS/2DMS. In MS/2DMS, an entire protein is initially fragmented in a hexapole collision cell, e.g., with collisionally activated dissociation (CAD). The primary fragments are then sent to the ICR cell, where 2DMS is performed with infrared multiphoton dissociation (IRMPD) or electron-capture dissociation (ECD). The resulting 2D mass spectra retain information equivalent to a set of TDP MS3 experiments on the selected protein. Up to n - 1 fragmentation steps can be added to the process, as long as an ion of interest can be unambiguously fragmented before the ICR cell, leading to an MS n/2DMS experiment whose output is a 2D mass spectrum retaining information equivalent to MS n. MS/2DMS and MS/MS/2DMS are used in this work for the structural analysis of ubiquitin (Ubi), noting several unique features which aid fragment identification. The use of CAD-MS/IRMPD-2DMS, CAD-MS/ECD-2DMS, and MS2/2DMS using, respectively, in-source dissociation (ISD), CAD, and ECD-2DMS led to 97% cleavage coverage for Ubi.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espectrometria de Massas/métodos , Ubiquitina/química , Ciclotrons , Espectrometria de Massas/instrumentação , Estrutura Molecular , Proteômica/métodos , Ubiquitina/análise
2.
Anal Chem ; 90(5): 3496-3504, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420878

RESUMO

Two-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it. The enhanced structural information gathered from the 2D mass spectrum is discussed in terms of how de novo peptide sequencing can be performed with increased confidence. 2D IR-ECD MS is shown to sequence peptides, to distinguish between leucine and isoleucine residues through the production of w ions as well as between C-terminal ( b/ c) and N-terminal ( y/ z) fragments through the use of higher harmonics, and to assign and locate peptide modifications.

3.
Anal Chem ; 89(18): 9892-9899, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28787150

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes. The use of 2D MS allowed generation of fragment m/z values for all the compounds in the mixture at once and allowed tandem mass spectrometry of species very close in m/z that would have been difficult to isolate with a quadrupole for standard MS/MS. Furthermore, the use of unique features of 2D MS such as the extraction of neutral-loss lines allowed the successful assignment of peaks from low abundant species that would have been more difficult with standard MS/MS. For all the samples, the amount of information obtained with 2D MS was comparable with what obtained with multiple 1D MS/MS experiments targeted on each individual component within each mixture but required a single experiment of about 20-40 min.

4.
J Am Soc Mass Spectrom ; 30(12): 2594-2607, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617086

RESUMO

Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension. In both dimensions, the phase behavior of precursor and fragment ions is found to be different. The dependence of the phase for both precursor and fragment ion signals on various parameters (e.g., modulation frequency, shape of the fragmentation zone) is discussed. Experimental data confirms the theoretical calculations of the phase in each dimension. Understanding the phase relationships in a 2D mass spectrum is beneficial to the development of possible algorithms for phase correction, which may improve both the signal-to-noise ratio and the resolving power of peaks in 2D mass spectra.

5.
J Am Soc Mass Spectrom ; 29(8): 1700-1705, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29869327

RESUMO

Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.


Assuntos
Calmodulina/química , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Calmodulina/genética , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA