Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7960): 351-359, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076628

RESUMO

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Assuntos
Mapeamento Encefálico , Cognição , Córtex Motor , Mapeamento Encefálico/métodos , Mãos/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Humanos , Recém-Nascido , Lactente , Criança , Animais , Macaca/anatomia & histologia , Macaca/fisiologia , Pé/fisiologia , Boca/fisiologia , Conjuntos de Dados como Assunto
2.
Am J Geriatr Psychiatry ; 30(3): 269-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34412936

RESUMO

OBJECTIVE: White matter hyperintensities (WMH) are linked to deficits in cognitive functioning, including cognitive control and memory; however, the structural, and functional mechanisms are largely unknown. We investigated the relationship between estimated regional disruptions to white matter fiber tracts from WMH, resting state functional connectivity (RSFC), and cognitive functions in older adults. DESIGN: Cross-sectional study. SETTING: Community. PARTICIPANTS: Fifty-eight cognitively-healthy older adults. MEASUREMENTS: Tasks of cognitive control and memory, structural MRI, and resting state fMRI. We estimated the disruption to white matter fiber tracts from WMH and its impact on gray matter regions in the cortical and subcortical frontoparietal network, default mode network, and ventral attention network by overlaying each subject's WMH mask on a normative tractogram dataset. We calculated RSFC between nodes in those same networks. We evaluated the interaction of regional WMH burden and RSFC in predicting cognitive control and memory. RESULTS: The interaction of estimated regional WMH burden and RSFC in cortico-striatal regions of the default mode network and frontoparietal network was associated with delayed recall. Models predicting working memory, cognitive inhibition, and set-shifting were not significant. CONCLUSION: Findings highlight the role of network-level structural and functional alterations in resting state networks that are related to WMH and impact memory in older adults.


Assuntos
Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Estudos Transversais , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
3.
Cereb Cortex ; 30(10): 5544-5559, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494823

RESUMO

This article advances two parallel lines of argument about resting-state functional magnetic resonance imaging (fMRI) signals, one empirical and one conceptual. The empirical line creates a four-part organization of the text: (1) head motion and respiration commonly cause distinct, major, unwanted influences (artifacts) in fMRI signals; (2) head motion and respiratory changes are, confoundingly, both related to psychological and clinical and biological variables of interest; (3) many fMRI denoising strategies fail to identify and remove one or the other kind of artifact; and (4) unremoved artifact, due to correlations of artifacts with variables of interest, renders studies susceptible to identifying variance of noninterest as variance of interest. Arising from these empirical observations is a conceptual argument: that an event-related approach to task-free scans, targeting common behaviors during scanning, enables fundamental distinctions among the kinds of signals present in the data, information which is vital to understanding the effects of denoising procedures. This event-related perspective permits statements like "Event X is associated with signals A, B, and C, each with particular spatial, temporal, and signal decay properties". Denoising approaches can then be tailored, via performance in known events, to permit or suppress certain kinds of signals based on their desirability.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Potenciais Evocados , Imageamento por Ressonância Magnética , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador
4.
Neuroimage ; 204: 116234, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589990

RESUMO

Breathing rate and depth influence the concentration of carbon dioxide in the blood, altering cerebral blood flow and thus functional magnetic resonance imaging (fMRI) signals. Such respiratory fluctuations can have substantial influence in studies of fMRI signal covariance in subjects at rest, the so-called "resting state functional connectivity" technique. If respiration is monitored during fMRI scanning, it is typically done using a belt about the subject's abdomen to record abdominal circumference. Several measures have been derived from these belt records, including the windowed envelope of the waveform (ENV), the windowed variance in the waveform (respiration variation, RV), and a measure of the amplitude of each breath divided by the cycle time of the breath (respiration volume per time, RVT). Any attempt to gauge respiratory contributions to fMRI signals requires a respiratory measure, but little is known about how these measures compare to each other, or how they perform beyond the small studies in which they were initially proposed. Here, we examine the properties of these measures in hundreds of healthy young adults scanned for an hour each at rest, a subset of the Human Connectome Project chosen for having high-quality physiological records. We find: 1) ENV, RV, and RVT are all correlated, and ENV and RV are more highly correlated to each other than to RVT; 2) respiratory events like deep breaths exhibit characteristic heart rate elevations, fMRI signal changes, head motions, and image quality abnormalities time-locked to large deflections in the belt traces; 3) all measures can "miss" deep breaths; 4) RVT "misses" deep breaths more than ENV or RV; 5) all respiratory measures change systematically over the course of a 14.4-min scan. We discuss the implications of these findings for the literature and ways to move forward in modeling respiratory influences on fMRI scans.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma , Respiração , Testes de Função Respiratória , Descanso/fisiologia , Adulto , Conectoma/métodos , Conectoma/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Testes de Função Respiratória/métodos , Testes de Função Respiratória/normas , Adulto Jovem
5.
Cereb Cortex ; 29(9): 3912-3921, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30364937

RESUMO

Noninvasive brain stimulation (NIBS) is a promising treatment for psychiatric and neurologic conditions, but outcomes are variable across treated individuals. In principle, precise targeting of individual-specific features of functional brain networks could improve the efficacy of NIBS interventions. Network theory predicts that the role of a node in a network can be inferred from its connections; as such, we hypothesized that targeting individual-specific "hub" brain areas with NIBS should impact cognition more than nonhub brain areas. Here, we first demonstrate that the spatial positioning of hubs is variable across individuals but reproducible within individuals upon repeated imaging. We then tested our hypothesis in healthy individuals using a prospective, within-subject, double-blind design. Inhibition of a hub with continuous theta burst stimulation disrupted information processing during working-memory more than inhibition of a nonhub area, despite targets being separated by only a few centimeters on the right middle frontal gyrus of each subject. Based upon these findings, we conclude that individual-specific brain network features are functionally relevant and could leveraged as stimulation sites in future NIBS interventions.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Inibição Neural/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
6.
Neuroimage ; 201: 116041, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344484

RESUMO

Head motion estimates in functional magnetic resonance imaging (fMRI) scans appear qualitatively different with sub-second image sampling rates compared to the multi-second sampling rates common in the past. Whereas formerly the head appeared still for much of a scan with brief excursions from baseline, the head now appears to be in constant motion, and motion estimates often seem to divulge little information about what is happening in a scan. This constant motion has been attributed to respiratory oscillations that do not alias at faster sampling rates, and investigators are divided on the extent to which such motion is "real" motion or only "apparent" pseudomotion. Some investigators have abandoned the use of motion estimates entirely due to these considerations. Here we investigate the properties of motion in several fMRI datasets sampled at rates between 720 and 1160 ms, and describe 5 distinct kinds of respiratory motion: 1) constant real respiratory motion in the form of head nodding most evident in vertical position and pitch, which can be very large; 2) constant pseudomotion at the same respiratory rate as real motion, occurring only in the phase encode direction; 3) punctate real motions occurring at times of very deep breaths; 4) a low-frequency pseudomotion in only the phase encode direction at and after very deep breaths; 5) slow modulation of vertical and anterior-posterior head position by the respiratory envelope. We reformulate motion estimates in light of these considerations and obtain good concordance between motion estimates, physiologic records, image quality measures, and events evident in the fMRI signals. We demonstrate how variables describing respiration or body habitus separately scale with distinct kinds of head motion. We also note heritable aspects of respiration and motion.


Assuntos
Cabeça/fisiologia , Imageamento por Ressonância Magnética , Movimento/fisiologia , Respiração , Adolescente , Artefatos , Criança , Feminino , Humanos , Masculino
9.
Cereb Cortex ; 25(12): 4740-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25073720

RESUMO

Autism spectrum disorders (ASDs) are characterized by social impairments alongside cognitive and behavioral inflexibility. While social deficits in ASDs have extensively been characterized, the neurobiological basis of inflexibility and its relation to core clinical symptoms of the disorder are unknown. We acquired functional neuroimaging data from 2 cohorts, each consisting of 17 children with ASDs and 17 age- and IQ-matched typically developing (TD) children, during stimulus-evoked brain states involving performance of social attention and numerical problem solving tasks, as well as during intrinsic, resting brain states. Effective connectivity between key nodes of the salience network, default mode network, and central executive network was used to obtain indices of functional organization across evoked and intrinsic brain states. In both cohorts examined, a machine learning algorithm was able to discriminate intrinsic (resting) and evoked (task) functional brain network configurations more accurately in TD children than in children with ASD. Brain state discriminability was related to severity of restricted and repetitive behaviors, indicating that weak modulation of brain states may contribute to behavioral inflexibility in ASD. These findings provide novel evidence for a potential link between neurophysiological inflexibility and core symptoms of this complex neurodevelopmental disorder.


Assuntos
Atenção/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Função Executiva/fisiologia , Mapeamento Encefálico , Criança , Reconhecimento Facial/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Comportamento Social
10.
Proc Natl Acad Sci U S A ; 110(29): 12060-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23776244

RESUMO

Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.


Assuntos
Transtorno Autístico/fisiopatologia , Modelos Psicológicos , Rede Nervosa/fisiopatologia , Recompensa , Percepção da Fala/fisiologia , Mapeamento Encefálico/métodos , Criança , Humanos , Imageamento por Ressonância Magnética , Motivação/fisiologia , Vias Neurais/fisiopatologia , Análise de Regressão
11.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260662

RESUMO

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

12.
Am J Psychiatry ; 180(3): 230-240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855880

RESUMO

OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) protocols increasingly use subgenual anterior cingulate cortex (sgACC) functional connectivity to individualize treatment targets. However, the efficacy of this approach is unclear, with conflicting findings and varying effect sizes across studies. Here, the authors investigated the effect of the stimulation site's functional connectivity with the sgACC (sgACC-StimFC) on treatment outcome to rTMS in 295 patients with major depression. METHODS: The reliability and accuracy of estimating sgACC functional connectivity were validated with data from individuals who underwent extensive functional MRI testing. Electric field modeling was used to analyze associations between sgACC-StimFC and clinical improvement using standardized assessments and to evaluate sources of heterogeneity. RESULTS: An imputation-based method provided reliable and accurate sgACC functional connectivity estimates. Treatment responses weakly but robustly correlated with sgACC-StimFC (r=-0.16), but only when the stimulated cortex was identified using electric field modeling. Surprisingly, this association was driven by patients with strong global signal fluctuations stemming from a specific periodic respiratory pattern (r=-0.49). CONCLUSIONS: Functional connectivity between the sgACC and the stimulated cortex was correlated with individual differences in treatment outcomes, but the association was weaker than those observed in previous studies and was accentuated in a subgroup of patients with distinct, respiration-related signal patterns in their scans. These findings indicate that in a large representative sample of patients with major depressive disorder, individual differences in sgACC-StimFC explained only ∼3% of the variance in outcomes, which may limit the utility of existing sgACC-based targeting protocols. However, these data also provide strong evidence for a true-albeit small-effect and highlight opportunities for incorporating additional functional connectivity measures to generate models of rTMS response with enhanced predictive power.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Depressão , Reprodutibilidade dos Testes , Córtex Cerebral
13.
STAR Protoc ; 4(1): 102118, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853696

RESUMO

Spatial targeting in transcranial magnetic stimulation protocols does not typically account for the idiosyncratic functional organization of individual human brains. Here, we provide a protocol for implementing targeted functional network stimulation (TANS), which accounts for each individual's unique functional neuroanatomy and cortical folding patterns. Using an example dataset, we describe how to create a head model and estimate the best coil placement and stimulation intensity to minimize off-target effects. For complete details on the use and execution of this protocol, please refer to Lynch et al. (2022).1.


Assuntos
Mapeamento Encefálico , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cabeça
14.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645792

RESUMO

Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.

15.
Neuron ; 110(20): 3263-3277.e4, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36113473

RESUMO

Transcranial magnetic stimulation (TMS) is used to treat multiple psychiatric and neurological conditions by manipulating activity in particular brain networks and circuits, but individual responses are highly variable. In clinical settings, TMS coil placement is typically based on either group average functional maps or scalp heuristics. Here, we found that this approach can inadvertently target different functional networks in depressed patients due to variability in their functional brain organization. More precise TMS targeting should be feasible by accounting for each patient's unique functional neuroanatomy. To this end, we developed a targeting approach, termed targeted functional network stimulation (TANS). The TANS approach improved stimulation specificity in silico in 8 highly sampled patients with depression and 6 healthy individuals and in vivo when targeting somatomotor functional networks representing the upper and lower limbs. Code for implementing TANS and an example dataset are provided as a resource.


Assuntos
Mapeamento Encefálico , Estimulação Magnética Transcraniana , Humanos , Encéfalo/fisiologia , Cabeça , Imageamento por Ressonância Magnética
16.
Nat Commun ; 13(1): 5692, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171190

RESUMO

The neural substrates of depression may differ in men and women, but the underlying mechanisms are incompletely understood. Here, we show that depression is associated with sex-specific patterns of abnormal functional connectivity in the default mode network and in five regions of interest with sexually dimorphic transcriptional effects. Regional differences in gene expression in two independent datasets explained the neuroanatomical distribution of abnormal connectivity. These gene sets varied by sex and were strongly enriched for genes implicated in depression, synapse function, immune signaling, and neurodevelopment. In an independent sample, we confirmed the prediction that individual differences in default mode network connectivity are explained by inferred brain expression levels for six depression-related genes, including PCDH8, a brain-specific protocadherin integral membrane protein implicated in activity-related synaptic reorganization. Together, our results delineate both shared and sex-specific changes in the organization of depression-related functional networks, with implications for biomarker development and fMRI-guided therapeutic neuromodulation.


Assuntos
Mapeamento Encefálico , Transcriptoma , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Depressão/genética , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais , Protocaderinas
17.
Curr Opin Behav Sci ; 40: 113-119, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34095359

RESUMO

Rapidly developing approaches to acquiring and analyzing densely-sampled, single-subject fMRI data have opened new avenues for understanding the neurobiological basis of individual differences in behavior and could allow fMRI to become a more clinically useful tool. Here, we review briefly key insights from these precision functional mapping studies and a highlight significant barrier to their clinical translation. Specifically, that reliable delineation of functional brain networks in individual humans can require hours of resting-state fMRI data per-subject. We found recently that multi-echo fMRI improves the test-retest reliability of resting-state functional connectivity measurements, mitigating the need for acquiring large quantities of per -subject data. Because the benefits of multi-echo acquisitions are most pronounced in clinically important but artifact-prone brain regions, such as the subgenual cingulate and structures deep in the subcortex, this approach has the potential to increase the impact of precision functional mapping routines in both healthy and clinical populations.

18.
Biol Psychiatry Glob Open Sci ; 1(4): 336-344, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704087

RESUMO

BACKGROUND: We investigated the evolving prevalence of mood and anxiety symptoms among health care workers from May 2020 to January 2021, risk factors for adverse outcomes, and characteristic modes of affective responses to pandemic-related stressors. METHODS: A total of 2307 health care workers (78.9% female, modal age 25-34 years) participated in an online survey assessing depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7 scale) symptoms, demographic variables, and self-reported impact of pandemic-related stressors. A total of 334 subjects were reassessed ∼6 months later. RESULTS: The prevalence of clinically significant depression and anxiety was 45.3% and 43.3%, respectively, and a majority (59.9%-62.9%) of those individuals had persistent significant symptoms at 6-month follow-up. Younger age, female gender, and specific occupations (support staff > nurses > physicians) were associated with increased depressive and anxiety symptoms. The most important risk factors were social isolation and fear of contracting COVID-19. The prevalence of clinically significant mood and anxiety symptoms increased by 39.8% from May 2020 to January 2021. Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7 scores were highly correlated and associated with nearly identical risk factors, suggesting that they are not capturing independent constructs in this sample. Principal component analysis identified seven orthogonal symptom domains with unique risk factors. CONCLUSIONS: Clinically significant mood and anxiety symptoms are highly prevalent and persistent among health care workers, and are associated with numerous risk factors, the strongest of which are related to pandemic stressors and potentially modifiable. Interventions aimed at reducing social isolation and mitigating the impact of fear of infection warrant further study.

20.
Neuron ; 105(4): 595-597, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32078793

RESUMO

In this issue of Neuron, Greene et al. (2020) identify zones of network specificity and multi-network integration in the basal ganglia and thalamus of individual human subjects. Such information could aid in the development of personalized and more effective brain stimulation therapies for neuropsychiatric disorders.


Assuntos
Gânglios da Base , Tálamo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA