Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 183(3): 591-593, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125888

RESUMO

Targeting cancer neoantigens generated by tumor-exclusive somatic mutations is an attractive yet challenging strategy for the robust and specific elimination of tumor cells by cellular immunotherapy. In this issue of Cell, Wells et al. describe a consortium-based approach to optimize bioinformatics pipelines to sensitively and accurately predict immunogenic neoantigens from next-generation sequencing data.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Epitopos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
2.
Nature ; 576(7786): 293-300, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802004

RESUMO

Chimeric antigen receptor (CAR) T cells mediate anti-tumour effects in a small subset of patients with cancer1-3, but dysfunction due to T cell exhaustion is an important barrier to progress4-6. To investigate the biology of exhaustion in human T cells expressing CAR receptors, we used a model system with a tonically signaling CAR, which induces hallmark features of exhaustion6. Exhaustion was associated with a profound defect in the production of IL-2, along with increased chromatin accessibility of AP-1 transcription factor motifs and overexpression of the bZIP and IRF transcription factors that have been implicated in mediating dysfunction in exhausted T cells7-10. Here we show that CAR T cells engineered to overexpress the canonical AP-1 factor c-Jun have enhanced expansion potential, increased functional capacity, diminished terminal differentiation and improved anti-tumour potency in five different mouse tumour models in vivo. We conclude that a functional deficiency in c-Jun mediates dysfunction in exhausted human T cells, and that engineering CAR T cells to overexpress c-Jun renders them resistant to exhaustion, thereby addressing a major barrier to progress for this emerging class of therapeutic agents.


Assuntos
Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Receptores de Antígenos de Linfócitos T/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285077

RESUMO

Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.


Assuntos
Cromatina/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos Quiméricos , Linfócitos T/fisiologia , Animais , Antígenos CD19 , Linhagem Celular , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Receptor de Morte Celular Programada 1/genética
4.
Blood ; 125(22): 3466-76, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25887778

RESUMO

T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor ß (FRß) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRß (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRß as well as endogenous FRß(+) AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRß(+) THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRß expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRß expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34(+) HSCs in vitro. Our results indicate that FRß is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA.


Assuntos
Receptor 2 de Folato/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Células Cultivadas , Feminino , Receptor 2 de Folato/genética , Terapia Genética/métodos , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteínas Mutantes Quiméricas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia
5.
J Transl Med ; 12: 347, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25496493

RESUMO

BACKGROUND: Redirection of T lymphocytes against tumor antigens can induce dramatic regression of advanced stage malignancy. The use of bispecific antibodies (BsAbs) that bind both the T-cell receptor (TCR) and a target antigen is one promising approach to T-cell redirection. However, BsAbs indiscriminately bind all CD3+ T-cells and trigger TCR activation in the absence of parallel costimulatory signals required to overcome T-cell unresponsiveness or anergy. METHODS: To address these limitations, a combination platform was designed wherein a unique BsAb referred to as frBsAb exclusively engages T-cells engineered to express a novel chimeric receptor comprised of extracellular folate receptor fused to intracellular TCR and CD28 costimulatory signaling domains in tandem; a BsAb-binding immune receptor (BsAb-IR). As a surrogate TCR, the BsAb-IR allows for concomitant TCR and costimulatory signaling exclusively in transduced T-cells upon engagement with specific frBsAbs, and can therefore redirect T-cells on command to desired antigen. Human primary T-cells were transduced with lentiviral vector and expanded for 14-18 days. BsAb-IRs were harvested and armed with frBsAbs to test for redirected cytotoxicity against CD20 positive cancer cell lines. RESULTS: Using frBsAbs specific for CD20 or HER2, the lytic activity of primary human T-cells expressing the BsAb-IR was specifically redirected against CD20+ leukemic cells or HER2+ epithelial cancer cells, respectively, while non-engineered T-cells were not activated. Notably, elimination of the CD28 costimulatory domain from the BsAb-IR construct significantly reduced frBsAb-redirected antitumor responses, confirming that frBsAbs are capable of delivering simultaneous TCR activation and costimulatory signals to BsAb-IR T-cells. CONCLUSION: In summary, our results establish the proof of concept that the combination of BsAbs with optimized gene-engineered T-cells provides the opportunity to specify and augment tumor antigen-specific T-cell activation and may improve upon the early success of conventional BsAbs in cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Engenharia Genética , Imunoterapia , Neoplasias/terapia , Linfócitos T/imunologia , Linhagem Celular , Humanos
6.
J Virol ; 86(7): 3436-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278253

RESUMO

Memory/effector T cells efficiently migrate into extralymphoid tissues and sites of infection, providing immunosurveillance and a first line of defense against invading pathogens. Even though it is a potential means to regulate the size, quality, and duration of a tissue infiltrate, T cell egress from infected tissues is poorly understood. Using a mouse model of influenza A virus infection, we found that CD8 effector T cells egressed from the infected lung in a CCR7-dependent manner. In contrast, following antigen recognition, effector CD8 T cell egress decreased and CCR7 function was reduced in vivo and in vitro, indicating that the exit of CD8 T cells from infected tissues is tightly regulated. Our data suggest that the regulation of T cell egress is a mechanism to retain antigen-specific effectors at the site of infection to promote viral clearance, while decreasing the numbers of bystander T cells and preventing overt inflammation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Feminino , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR7/genética , Receptores CCR7/imunologia
7.
Mol Ther ; 20(4): 736-48, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22008913

RESUMO

Since previous work using a nonreplicating adenovirus-expressing mouse interferon-ß (Ad.mIFNß) showed promising preclinical activity, we postulated that a vector-expressing IFNß at high levels that could also replicate would be even more beneficial. Accordingly a replication competent, recombinant vaccinia viral vector-expressing mIFNß (VV.mIFNß) was tested. VV.mIFNß-induced antitumor responses in two syngeneic mouse flank models of lung cancer. Although VV.mIFNß had equivalent in vivo efficacy in both murine tumor models, the mechanisms of tumor killing were completely different. In LKRM2 tumors, viral replication was minimal and the tumor killing mechanism was due to activation of immune responses through induction of a local inflammatory response and production of antitumor CD8 T-cells. In contrast, in TC-1 tumors, the vector replicated well, induced an innate immune response, but antitumor activity was primarily due to a direct oncolytic effect. However, the VV.mIFNß vector was able to augment the efficacy of an antitumor vaccine in the TC-1 tumor model in association with increased numbers of infiltrating CD8 T-cells. These data show the complex relationships between oncolytic viruses and the immune system which, if understood and harnessed correctly, could potentially be used to enhance the efficacy of immunotherapy.


Assuntos
Imunoterapia/métodos , Interferon beta/metabolismo , Vaccinia virus/genética , Animais , Linhagem Celular Tumoral , Feminino , Interferon beta/genética , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vaccinia virus/imunologia , Replicação Viral/genética , Replicação Viral/fisiologia
9.
Nat Commun ; 12(1): 877, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563975

RESUMO

The immunosuppressive tumor microenvironment (TME) represents a major barrier for effective immunotherapy. Tumor-associated macrophages (TAMs) are highly heterogeneous and plastic cell components of the TME which can either promote tumor progression (M2-like) or boost antitumor immunity (M1-like). Here, we demonstrate that a subset of TAMs that express folate receptor ß (FRß) possess an immunosuppressive M2-like profile. In syngeneic tumor mouse models, chimeric antigen receptor (CAR)-T cell-mediated selective elimination of FRß+ TAMs in the TME results in an enrichment of pro-inflammatory monocytes, an influx of endogenous tumor-specific CD8+ T cells, delayed tumor progression, and prolonged survival. Preconditioning of the TME with FRß-specific CAR-T cells also improves the effectiveness of tumor-directed anti-mesothelin CAR-T cells, while simultaneous co-administration of both CAR products does not. These results highlight the pro-tumor role of FRß+ TAMs in the TME and the therapeutic implications of TAM-depleting agents as preparative adjuncts to conventional immunotherapies that directly target tumor antigens.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Receptor 2 de Folato/imunologia , Receptor 2 de Folato/metabolismo , Humanos , Terapia de Imunossupressão , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Neoplasias/imunologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo
10.
Science ; 372(6537)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795428

RESUMO

T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)-T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.


Assuntos
Dasatinibe/farmacologia , Epigênese Genética , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigenoma , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Memória Imunológica , Ativação Linfocitária , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos , Neoplasias Experimentais/terapia , Domínios Proteicos , Estabilidade Proteica , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais , Linfócitos T/metabolismo , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Discov ; 10(5): 702-723, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193224

RESUMO

Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28ζ) outperforms that in tisagenlecleucel (CD19-4-1BBζ) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBζ CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBζ-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. SIGNIFICANCE: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28ζ-CARs outperform 4-1BBζ-CARs when antigen density is low. However, 4-1BBζ-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence.This article is highlighted in the In This Issue feature, p. 627.


Assuntos
Receptores de Antígenos Quiméricos/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
12.
Nat Rev Immunol ; 19(11): 665-674, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570879

RESUMO

'T cell exhaustion' is a broad term that has been used to describe the response of T cells to chronic antigen stimulation, first in the setting of chronic viral infection but more recently in response to tumours. Understanding the features of and pathways to exhaustion has crucial implications for the success of checkpoint blockade and adoptive T cell transfer therapies. In this Viewpoint article, 18 experts in the field tell us what exhaustion means to them, ranging from complete lack of effector function to altered functionality to prevent immunopathology, with potential differences between cancer and chronic infection. Their responses highlight the dichotomy between terminally differentiated exhausted T cells that are TCF1- and the self-renewing TCF1+ population from which they derive. These TCF1+ cells are considered by some to have stem cell-like properties akin to memory T cell populations, but the developmental relationships are unclear at present. Recent studies have also highlighted an important role for the transcriptional regulator TOX in driving the epigenetic enforcement of exhaustion, but key questions remain about the potential to reverse the epigenetic programme of exhaustion and how this might affect the persistence of T cell populations.


Assuntos
Linfócitos T/imunologia , Animais , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Humanos , Infecções/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/fisiologia
13.
Oncoimmunology ; 7(3): e1395997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399394

RESUMO

T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.

16.
Cancer Res ; 72(7): 1844-52, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22315351

RESUMO

Adoptive immunotherapies composed of T cells engineered to express a chimeric antigen receptor (CAR) offer an attractive strategy for treatment of human cancer. However, CARs have a fixed antigen specificity such that only one tumor-associated antigen (TAA) can be targeted, limiting the efficacy that can be achieved because of heterogeneous TAA expression. For this reason, a more generalized and effective application of CAR therapy would benefit from the capability to produce large panels of CARs against many known TAAs. In this study, we show a novel strategy to extend the recognition specificity potential of a bioengineered lymphocyte population, allowing flexible approaches to redirect T cells against various TAAs. Our strategy employs a biotin-binding immune receptor (BBIR) composed of an extracellular-modified avidin linked to an intracellular T-cell signaling domain. BBIR T cells recognized and bound exclusively to cancer cells pretargeted with specific biotinylated molecules. The versatility afforded by BBIRs permitted sequential or simultaneous targeting of a combination of distinct antigens. Together, our findings show that a platform of universal T-cell specificity can significantly extend conventional CAR approaches, permitting the tailored generation of T cells of unlimited antigen specificity for improving the effectiveness of adoptive T-cell immunotherapies for cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/fisiologia , Biotinilação , Moléculas de Adesão Celular/fisiologia , Linhagem Celular , Molécula de Adesão da Célula Epitelial , Epitopos , Feminino , Engenharia Genética , Humanos , Interferon gama/biossíntese , Camundongos , Neoplasias/imunologia , Linfócitos T/fisiologia
17.
Mol Brain ; 4: 40, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-22051374

RESUMO

BACKGROUND: The small non-coding microRNAs play an important role in development by regulating protein translation, but their involvement in axon guidance is unknown. Here, we investigated the role of microRNA-134 (miR-134) in chemotropic guidance of nerve growth cones. RESULTS: We found that miR-134 is highly expressed in the neural tube of Xenopus embryos. Fluorescent in situ hybridization also showed that miR-134 is enriched in the growth cones of Xenopus spinal neurons in culture. Importantly, overexpression of miR-134 mimics or antisense inhibitors blocked protein synthesis (PS)-dependent attractive responses of Xenopus growth cones to a gradient of brain-derived neurotrophic factor (BDNF). However, miR-134 mimics or inhibitors had no effect on PS-independent bidirectional responses of Xenopus growth cones to bone morphogenic protein 7 (BMP7). Our data further showed that Xenopus LIM kinase 1 (Xlimk1) mRNA is a potential target of miR-134 regulation. CONCLUSIONS: These findings demonstrate a role for miR-134 in translation-dependent guidance of nerve growth cones. Different guidance cues may act through distinct signaling pathways to elicit PS-dependent and -independent mechanisms to steer growth cones in response to a wide array of spatiotemporal cues during development.


Assuntos
Quimiotaxia , Cones de Crescimento/metabolismo , MicroRNAs/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Quimiotaxia/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/enzimologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Oligonucleotídeos Antissenso/farmacologia , Fosforilação/efeitos dos fármacos , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA