Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 13: 206, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24885824

RESUMO

BACKGROUND: Multi-model ensembles could overcome challenges resulting from uncertainties in models' initial conditions, parameterization and structural imperfections. They could also quantify in a probabilistic way uncertainties in future climatic conditions and their impacts. METHODS: A four-malaria-model ensemble was implemented to assess the impact of long-term changes in climatic conditions on Plasmodium falciparum malaria morbidity observed in Kericho, in the highlands of Western Kenya, over the period 1979-2009. Input data included quality controlled temperature and rainfall records gathered at a nearby weather station over the historical periods 1979-2009 and 1980-2009, respectively. Simulations included models' sensitivities to changes in sets of parameters and analysis of non-linear changes in the mean duration of host's infectivity to vectors due to increased resistance to anti-malarial drugs. RESULTS: The ensemble explained from 32 to 38% of the variance of the observed P. falciparum malaria incidence. Obtained R²-values were above the results achieved with individual model simulation outputs. Up to 18.6% of the variance of malaria incidence could be attributed to the +0.19 to +0.25°C per decade significant long-term linear trend in near-surface air temperatures. On top of this 18.6%, at least 6% of the variance of malaria incidence could be related to the increased resistance to anti-malarial drugs. Ensemble simulations also suggest that climatic conditions have likely been less favourable to malaria transmission in Kericho in recent years. CONCLUSIONS: Long-term changes in climatic conditions and non-linear changes in the mean duration of host's infectivity are synergistically driving the increasing incidence of P. falciparum malaria in the Kenyan highlands. User-friendly, online-downloadable, open source mathematical tools, such as the one presented here, could improve decision-making processes of local and regional health authorities.


Assuntos
Clima , Malária Falciparum/epidemiologia , Humanos , Quênia/epidemiologia , Modelos Estatísticos , Chuva , Temperatura
2.
Malar J ; 10: 12, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241505

RESUMO

BACKGROUND: Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. METHODS: Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. RESULTS: An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. CONCLUSION: This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.


Assuntos
Clima , Malária/epidemiologia , Incidência , Quênia/epidemiologia , Chuva , Temperatura
3.
Am J Trop Med Hyg ; 97(3_Suppl): 32-45, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28990912

RESUMO

Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.


Assuntos
Controle de Doenças Transmissíveis/organização & administração , Malária/prevenção & controle , Programas Nacionais de Saúde/organização & administração , Chuva , Temperatura , África/epidemiologia , África Subsaariana/epidemiologia , Clima , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA