Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7965): 557-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198485

RESUMO

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Assuntos
Arabidopsis , Centrômero , Elementos de DNA Transponíveis , DNA Satélite , Evolução Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/genética , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , DNA Satélite/genética , Conversão Gênica
2.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

3.
Plant J ; 119(3): 1313-1326, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838061

RESUMO

While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.


Assuntos
Cardamine , Inativação Gênica , Filogenia , Poliploidia , RNA Ribossômico 5S , RNA Ribossômico 5S/genética , Cardamine/genética , Genoma de Planta/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Regulação da Expressão Gênica de Plantas
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39073781

RESUMO

The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.


Assuntos
Genoma de Planta , Duplicação Gênica , Evolução Molecular , Elementos de DNA Transponíveis , Estresse Fisiológico , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas
5.
Plant Cell ; 34(7): 2475-2491, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441689

RESUMO

The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.


Assuntos
Evolução Molecular , Poliploidia , Genômica , Cariótipo , Meiose
6.
Plant J ; 116(2): 446-466, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428465

RESUMO

Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.


Assuntos
Brassicaceae , Genoma de Planta , Genoma de Planta/genética , Brassicaceae/genética , Poliploidia , Plantas/genética , Biodiversidade
7.
Ann Bot ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196767

RESUMO

BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analyzed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes, and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potenatially also influencing the process of post-polyploid diploidization. We propose a model which in a single famework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes, and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.

8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649989

RESUMO

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.


Assuntos
Adaptação Fisiológica/genética , Brassicaceae/genética , Ecossistema , Especiação Genética , Genoma de Planta , Brassicaceae/classificação , Brassicaceae/fisiologia , Filogenia , Poliploidia
9.
Plant J ; 112(3): 622-629, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35916590

RESUMO

Hexaploid camelina (Camelina sativa; 2n = 6x = 40) is an important oilseed crop closely related to Arabidopsis. Compared to other polyploid crops, the origin of the three camelina subgenomes has begun to be unveiled only recently. While phylogenomic studies identified the diploid C. hispida (2n = 2x = 14) as the paternal genome of C. sativa, the maternal donor genome remained unknown. Because the chromosomes assigned to a putative maternal genome resembled those of diploid C. neglecta (2n = 12), a tetraploid C. neglecta-like genome (2n = 4x = 26) was hypothesized to be the likely maternal ancestor of the hexaploid crop. Here we report the chromosome-level structure of the predicted tetraploid Camelina genome identified among genotypes previously classified together as C. microcarpa and referred to here as C. intermedia. Detailed cytogenomic analysis of the tetraploid genome revealed high collinearity with two maternally inherited subgenomes of the hexaploid C. sativa. The identification of the missing donor tetraploid genome provides new insights into the reticulate evolutionary history of the Camelina polyploid complex and allows us to postulate a comprehensive evolutionary model for the genus. The herein elucidated origin of the C. sativa genome opens the door for subsequent genome modifications and resynthesis of the allohexaploid camelina genome.


Assuntos
Arabidopsis , Brassicaceae , Tetraploidia , Genoma de Planta/genética , Brassicaceae/genética , Poliploidia , Diploide , Arabidopsis/genética
10.
Plant J ; 110(5): 1462-1475, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352402

RESUMO

The meadowfoam family (Limnanthaceae) is one of the smallest and genomically underexplored families of the Brassicales. The Limnanthaceae harbor about seven species in the genus Limnanthes (meadowfoam) and Floerkea proserpinacoides (false mermaidweed), all native to North America. Because all Limnanthes and Floerkea species have only five chromosome pairs, i.e., a chromosome number rare in Brassicales and shared with Arabidopsis thaliana (Arabidopsis), we examined the Limnanthaceae genomes as a potential model system. Using low-coverage whole-genome sequencing data, we reexamined phylogenetic relationships and characterized the repeatomes of Limnanthaceae genomes. Phylogenies based on complete chloroplast and 35S rDNA sequences corroborated the sister relationship between Floerkea and Limnanthes and two major clades in the latter genus. The genome size of Limnanthaceae species ranges from 1.5 to 2.1 Gb, apparently due to the large increase in DNA repeats, which constitute 60-70% of their genomes. Repeatomes are dominated by long terminal repeat retrotransposons, while tandem repeats represent only less than 0.5% of the genomes. The average chromosome size in Limnanthaceae species (340-420 Mb) is more than 10 times larger than in Arabidopsis (32 Mb). A three-dimensional fluorescence in situ hybridization analysis demonstrated that the five chromosome pairs in interphase nuclei of Limnanthes species adopt the Rabl-like configuration.


Assuntos
Arabidopsis , Magnoliopsida , Arabidopsis/genética , Cromossomos , Hibridização in Situ Fluorescente , Interfase , Magnoliopsida/genética , Filogenia
11.
Mol Biol Evol ; 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671323

RESUMO

KINETOCHORE NULL2 (KNL2) plays key role in the recognition of centromeres and new CENH3 deposition. To gain insight into the origin and diversification of the KNL2 gene, we reconstructed its evolutionary history in the plant kingdom. Our results indicate that the KNL2 gene in plants underwent three independent ancient duplications in ferns, grasses and eudicots. Additionally, we demonstrated that previously unclassified KNL2 genes could be divided into two clades αKNL2 and ßKNL2 in eudicots and γKNL2 and δKNL2 in grasses, respectively. KNL2s of all clades encode the conserved SANTA domain, but only the αKNL2 and γKNL2 groups additionally encode the CENPC-k motif. In the more numerous eudicot sequences, signatures of positive selection were found in both αKNL2 and ßKNL2 clades, suggesting recent or ongoing adaptation. The confirmed centromeric localization of ßKNL2 and mutant analysis suggests that it participates in loading of new CENH3, similarly to αKNL2. A high rate of seed abortion was found in heterozygous ßKNL2 plants and the germinated homozygous mutants did not develop beyond the seedling stage. Taken together, our study provides a new understanding of the evolutionary diversification of the plant kinetochore assembly gene KNL2, and suggests that the plant-specific duplicated KNL2 genes are involved in centromere and/or kinetochore assembly for preserving genome stability.

12.
Plant Physiol ; 190(1): 403-420, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35670733

RESUMO

Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.


Assuntos
Brassicaceae , Genomas de Plastídeos , Brassicaceae/genética , Evolução Molecular , Especiação Genética , Genomas de Plastídeos/genética , Filogenia , Plastídeos/genética
13.
Mol Phylogenet Evol ; 178: 107666, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384185

RESUMO

BACKGROUND AND AIMS: A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. METHODS: In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. KEY RESULTS: Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54-8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. CONCLUSIONS: Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.


Assuntos
Amomum , Zingiberaceae , Tamanho do Genoma , Filogenia , Amomum/genética , Zingiberaceae/genética , Genoma de Planta , DNA de Plantas/genética , DNA Ribossômico/genética , DNA de Cloroplastos
14.
Plant Cell ; 32(3): 650-665, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919297

RESUMO

Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.


Assuntos
Brassicaceae/genética , Centrômero/genética , Evolução Molecular , Genoma de Planta , Cromossomos de Plantas/genética , Cariótipo , Filogenia , Sequências de Repetição em Tandem/genética
15.
Am J Bot ; 110(10): e16226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561651

RESUMO

PREMISE: Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS: To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS: Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS: This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.


Assuntos
Brassicaceae , Filogenia , Brassicaceae/genética , Evolução Biológica , Genômica
16.
Plant J ; 108(6): 1768-1785, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661331

RESUMO

Whole-genome duplications (WGDs) and chromosome rearrangements (CRs) play the key role in driving the diversification and evolution of plant lineages. Although the direct link between WGDs and plant diversification is well documented, relatively few studies focus on the evolutionary significance of CRs. The cruciferous tribe Thlaspideae represents an ideal model system to address the role of large-scale chromosome alterations in genome evolution, as most Thlaspideae species share the same diploid chromosome number (2n = 2x = 14). Here we constructed the genome structure in 12 Thlaspideae species, including field pennycress (Thlaspi arvense) and garlic mustard (Alliaria petiolata). We detected and precisely characterized genus- and species-specific CRs, mostly pericentric inversions, as the main genome-diversifying drivers in the tribe. We reconstructed the structure of seven chromosomes of an ancestral Thlaspideae genome, identified evolutionary stable chromosomes versus chromosomes prone to CRs, estimated the rate of CRs, and uncovered an allohexaploid origin of garlic mustard from diploid taxa closely related to A. petiolata and Parlatoria cakiloidea. Furthermore, we performed detailed bioinformatic analysis of the Thlaspideae repeatomes, and identified repetitive elements applicable as unique species- and genus-specific barcodes and chromosome landmarks. This study deepens our general understanding of the evolutionary role of CRs, particularly pericentric inversions, in plant genome diversification, and provides a robust base for follow-up whole-genome sequencing efforts.


Assuntos
Brassicaceae/genética , Cromossomos de Plantas , Genoma de Planta , Evolução Biológica , Inversão Cromossômica , DNA de Plantas/genética , DNA Ribossômico/genética , Diploide , Cariótipo , Sequências Repetitivas de Ácido Nucleico , Thlaspi/genética
17.
Plant J ; 108(2): 528-540, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390055

RESUMO

Arabidopsis thaliana has become a major plant research model, where interphase nuclear organization exhibits unique features, including nucleolus-associated telomere clustering. The chromocenter (CC)-loop model, or rosette-like configuration, describes intranuclear chromatin organization in Arabidopsis as megabase-long loops anchored in, and emanating from, peripherally positioned CCs, with those containing telomeres associating with the nucleolus. To investigate whether the CC-loop organization is universal across the mustard family (crucifers), the nuclear distributions of centromeres, telomeres and nucleoli were analyzed by fluorescence in situ hybridization in seven diploid species (2n = 10-16) representing major crucifer clades with an up to 26-fold variation in genome size (160-4260 Mb). Nucleolus-associated telomere clustering was confirmed in Arabidopsis (157 Mb) and was newly identified as the major nuclear phenotype in other species with a small genome (215-381 Mb). In large-genome species (2611-4264 Mb), centromeres and telomeres adopted a Rabl-like configuration or dispersed distribution in the nuclear interior; telomeres only rarely associated with the nucleolus. In Arabis cypria (381 Mb) and Bunias orientalis (2611 Mb), tissue-specific patterns deviating from the major nuclear phenotypes were observed in anther and stem tissues, respectively. The rosette-like configuration, including nucleolus-associated telomere clustering in small-genome species from different infrafamiliar clades, suggests that genomic properties rather than phylogenetic position determine the interphase nuclear organization. Our data suggest that nuclear genome size, average chromosome size and degree of longitudinal chromosome compartmentalization affect interphase chromosome organization in crucifer genomes.


Assuntos
Brassicaceae/genética , Nucléolo Celular/genética , Genoma de Planta , Telômero/genética , Arabidopsis/genética , Arabis/genética , Centrômero/genética , Cromatina/genética , DNA Ribossômico/genética , Tamanho do Genoma , Heterocromatina/genética , Hibridização in Situ Fluorescente , Interfase , Filogenia
18.
Mol Biol Evol ; 38(5): 1695-1714, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331908

RESUMO

Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.


Assuntos
Evolução Biológica , Brassicaceae/genética , Cromossomos de Plantas , Genoma de Planta , Poliploidia , Duplicação Gênica , Hibridização Genética
19.
New Phytol ; 235(3): 1246-1259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460285

RESUMO

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.


Assuntos
Liliaceae , Potentilla , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Hibridização in Situ Fluorescente , Filogenia , Potentilla/genética
20.
Plant Cell ; 31(11): 2596-2612, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451448

RESUMO

Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.


Assuntos
Brassicaceae/genética , Cromotripsia , Diploide , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Brassicaceae/classificação , Cromossomos de Plantas , Hibridização Genética , Filogenia , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA