RESUMO
OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.
Assuntos
Neoplasias Cerebelares , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Meduloblastoma , Ossificação Heterotópica , Dermatopatias Genéticas , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Cromograninas/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/complicações , Lactente , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/complicações , Prognóstico , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , MutaçãoRESUMO
BACKGROUND: Achondroplasia and mandibulofacial dysostosis with microcephaly (MFDM) are rare monogenic, dominant disorders, caused by gain-of-function fibroblast growth factor receptor 3 (FGFR3) gene variants and loss-of-function elongation factor Tu GTP binding domain-containing 2 (EFTUD2) gene variants, respectively. The coexistence of two distinct Mendelian disorders in a single individual is uncommon and challenges the traditional paradigm of a single genetic disorder explaining a patient's symptoms, opening new avenues for diagnosis and management. CASE PRESENTATION: We present a case of a female patient initially diagnosed with achondroplasia due to a maternally inherited pathogenic FGFR3 variant. She was referred to our genetic department due to her unusually small head circumference and short stature, which were both significantly below the expected range for achondroplasia. Additional features included distinctive facial characteristics, significant speech delay, conductive hearing loss, and epilepsy. Given the complexity of her phenotype, she was recruited to the DDD (Deciphering Developmental Disorders) study and the 100,000 Genomes project for further investigation. Subsequent identification of a complex EFTUD2 intragenic rearrangement confirmed an additional diagnosis of mandibulofacial dysostosis with microcephaly (MFDM). CONCLUSION: This report presents the first case of a dual molecular diagnosis of achondroplasia and mandibulofacial dysostosis with microcephaly in the same patient. This case underscores the complexity of genetic diagnoses and the potential for coexistence of multiple genetic syndromes in a single patient. This case expands our understanding of the molecular basis of dual Mendelian disorders and highlights the importance of considering the possibility of dual molecular diagnoses in patients with phenotypic features that are not fully accounted for by their primary diagnosis.
Assuntos
Acondroplasia , Disostose Mandibulofacial , Microcefalia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Ribonucleoproteína Nuclear Pequena U5 , Humanos , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/complicações , Feminino , Disostose Mandibulofacial/genética , Acondroplasia/genética , Acondroplasia/complicações , Ribonucleoproteína Nuclear Pequena U5/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fatores de Alongamento de Peptídeos/genética , FenótipoRESUMO
Rare genetic disorders represent some of the most severe and life-limiting conditions that constitute a considerable burden on global healthcare systems and societies. Most individuals affected by rare disorders remain undiagnosed, highlighting the unmet need for improved disease gene discovery and novel variant interpretation. Aberrant (de) phosphorylation can have profound pathological consequences underpinning many disease processes. Numerous phosphatases and associated proteins have been identified as disease genes, with many more likely to have gone undiscovered thus far. To begin to address these issues, we have performed a systematic survey of de novo variants amongst 189 genes encoding phosphatase catalytic subunits found in rare disease patients recruited to the 100,000 Genomes Project (100 kGP), the largest national sequencing project of its kind in the United Kingdom. We found that 49% of phosphatases were found to carry de novo mutation(s) in this cohort. Only 25% of these phosphatases have been previously linked to genetic disorders. A gene-to-patient approach matching variants to phenotypic data identified 9 novel candidate rare-disease genes: PTPRD, PTPRG, PTPRT, PTPRU, PTPRZ1, MTMR3, GAK, TPTE2, PTPN18. As the number of patients undergoing whole genome sequencing increases and information sharing improves, we anticipate that reiterative analysis of genomic and phenotypic data will continue to identify candidate phosphatase disease genes for functional validation. This is the first step towards delineating the aetiology of rare genetic disorders associated with altered phosphatase function, leading to new biological insights and improved clinical outcomes for the affected individuals and their families.