Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hippocampus ; 33(4): 271-306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36259116

RESUMO

The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.


Assuntos
Hipocampo , Células-Tronco Neurais , Animais , Humanos , Adulto , Filogenia , Hipocampo/fisiologia , Neurogênese/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Mamíferos
2.
Nutr Neurosci ; 15(5): 13-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23232053

RESUMO

BACKGROUND: In a previous report, we have characterized the antiperoxidative properties of alpha-mangostin in different toxic models tested in nerve tissue preparations. OBJECTIVES: Here, the modulatory effects of this xanthone on the glutathione system (reduced glutathione (GSH) levels, glutathione peroxidase (GPx), and glutathione S-transferase (GST) activities) were tested in synaptosomal P2 fractions isolated from rat brains in order to provide further information on key mechanisms exerted by this antioxidant in the nervous system. METHODS: Synaptosomes were exposed to increasing concentrations of the xanthone, and also challenged to the toxic actions of a free radical generator, ferrous sulfate (FeSO(4)). For comparative purposes, the mitochondrial toxin 3-nitropropionic acid (3-NP) was also explored. RESULTS: Alpha-mangostin significantly decreased the levels of GSH, and increased GPx activity. DISCUSSION: This finding was interpreted as a modulatory action of the GSH system in preparation to exert antioxidant responses. Although FeSO(4) exhibited similar effects, these were interpreted as a compensatory response to the toxic actions of the pro-oxidant. We came to this conclusion based on our previous report where alpha-mangostin produced antiperoxidative effects and FeSO(4) produced oxidative damage to lipids. GST activity remained unaffected by both the antioxidant and the pro-oxidant. Our results suggest that alpha-mangostin is able to modulate GPx activity as a potential antioxidant strategy, thereby transiently consuming GSH levels.


Assuntos
Encéfalo/metabolismo , Garcinia mangostana/química , Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Xantonas/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Compostos Ferrosos/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Masculino , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Propionatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Sinaptossomos/metabolismo
3.
Front Neurosci ; 15: 740282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140581

RESUMO

The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12-14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12-14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.

4.
Front Cell Dev Biol ; 8: 564561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042999

RESUMO

Maternal diabetes has been related to low verbal task scores, impaired fine and gross motor skills, and poor performance in graphic and visuospatial tasks during childhood. The primary motor cortex is important for controlling motor functions, and embryos exposed to high glucose show changes in cell proliferation, migration, and differentiation during corticogenesis. However, the existing studies do not discriminate between embryos with or without neural tube defects, making it difficult to conclude whether the reported changes are related to neural tube defects or other anomalies. Furthermore, postnatal effects on central nervous system cytoarchitecture and function have been scarcely addressed. Through molecular, biochemical, morphological, and electrophysiological approaches, we provide evidence of impaired primary motor cerebral cortex lamination and neuronal function in pups from diabetic rats, showing an altered distribution of SATB2, FOXP2, and TBR1, impaired cell migration and polarity, and decreased excitability of deep-layer cortical neurons, suggesting abnormalities in cortico-cortical and extra-cortical innervation. Furthermore, phase-plot analysis of action potentials suggests changes in the activity of potassium channels. These results indicate that high-glucose insult during development promotes complex changes in migration, neurogenesis, cell polarity establishment, and dendritic arborization, which in turn lead to reduced excitability of deep-layer cortical neurons.

5.
Nutr Neurosci ; 12(1): 35-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19178790

RESUMO

The antiperoxidative properties of alpha-mangostin, a xanthone isolated from mangosteen fruit, were tested for the first time in nerve tissue exposed to different toxic insults. Two reliable biological preparations (rat brain homogenates and synaptosomal P2 fractions) were exposed to the toxic actions of a free radical generator (ferrous sulfate), an excitotoxic agent (quinolinate), and a mitochondrial toxin (3-nitropropionate). alpha-Mangostin decreased the lipoperoxidative action of FeSO(4) in both preparations in a concentration-dependent manner, and completely abolished the peroxidative effects of quinolinate, 3-nitropropionate and FeSO(4) + quinolinate at all concentrations tested. Interestingly, when tested alone in brain homogenates, alpha-mangostin significantly decreased the lipoperoxidation even below basal levels. alpha-Mangostin also prevented the decreased reductant capacity of mitochondria in synaptosomal fractions. Our results suggest that alpha-mangostin exerts a robust antiperoxidative effect in brain tissue preparations probably through its properties as a free radical scavenger. In light of these findings, this antioxidant should be tested in other neurotoxic models involving oxidative stress.


Assuntos
Antioxidantes/farmacologia , Encéfalo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Xantonas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Relação Dose-Resposta a Droga , Compostos Ferrosos/antagonistas & inibidores , Compostos Ferrosos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Nitrocompostos/antagonistas & inibidores , Nitrocompostos/farmacologia , Propionatos/antagonistas & inibidores , Propionatos/farmacologia , Ácido Quinolínico/antagonistas & inibidores , Ácido Quinolínico/farmacologia , Ratos , Ratos Wistar , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Substâncias Reativas com Ácido Tiobarbitúrico/análise
6.
Front Neurosci ; 13: 360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040765

RESUMO

The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30483218

RESUMO

The purpose of this review was to search for experimental or clinical evidence on the effect of hyperglycemia in fetal programming to neurological diseases, excluding evident neural tube defects. The lack of timely diagnosis and the inadequate control of diabetes during pregnancy have been related with postnatal obesity, low intellectual and verbal coefficients, language and motor deficits, attention deficit with hyperactivity, problems in psychosocial development, and an increased predisposition to autism and schizophrenia. It has been proposed that several childhood or adulthood diseases have their origin during fetal development through a phenomenon called fetal programming. However, not all the relationships between the outcomes mentioned above and diabetes during gestation are clear, well-studied, or have been related to fetal programming. To understand this relationship, it is imperative to understand how developmental processes take place in health, in order to understand how the functional cytoarchitecture of the central nervous system takes place; to identify changes prompted by hyperglycemia, and to correlate them with the above postnatal impaired functions. Although changes in the establishment of patterns during central nervous system fetal development are related to a wide variety of neurological pathologies, the mechanism by which several maternal conditions promote fetal alterations that contribute to impaired neural development with postnatal consequences are not clear. Animal models have been extremely useful in studying the effect of maternal pathologies on embryo and fetal development, since obtaining central nervous system tissue in humans with normal appearance during fetal development is an important limitation. This review explores the state of the art on this topic, to help establish the way forward in the study of fetal programming under hyperglycemia and its impact on neurological and psychiatric disorders.

8.
Basic Clin Pharmacol Toxicol ; 109(5): 350-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21645264

RESUMO

In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.


Assuntos
Ansiolíticos/farmacologia , Antioxidantes/farmacologia , Diazepam/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Estresse Fisiológico , Animais , Western Blotting , Corticosterona/sangue , Imobilização , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
9.
Basic Clin Pharmacol Toxicol ; 109(2): 123-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21371264

RESUMO

This work focuses on the effect of acute stress on different markers of oxidative stress and mitochondrial dysfunction in the rat striatum. In addition, the effect of a single dose of l-carnitine (l-CAR, 300 mg/kg, i.p.) was evaluated in these animals. Immobilization (restraint) stress was induced to rats for 24 hr. The levels of lipid peroxidation (LP) and mitochondrial function (MF), as well as the superoxide dismutase (SOD) activity and content and reduced glutathione (GSH) levels, were all measured in striatal samples of animals subjected to stress. Our results indicate that acute stress is able to increase the striatal LP and reduced the levels of MF, while significantly lowered the manganese superoxide dismutase (Mn-SOD) activity. No changes were observed in the total striatal content of SOD, nor in GSH levels, but serum corticosterone content was increased by stress. l-CAR exhibited partial protective effects on the immobilized group, reducing the striatal LP and recovering the striatal MF and Mn-SOD activity. Our results suggest that acute restraint stress brings an accurate model for early pro-oxidant responses that can be targeted by broad-spectrum antioxidants like l-CAR.


Assuntos
Carnitina/farmacologia , Corpo Estriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Corpo Estriado/efeitos dos fármacos , Corticosterona/sangue , Peroxidação de Lipídeos , Masculino , Mitocôndrias/fisiologia , Ratos , Ratos Wistar , Restrição Física , Superóxido Dismutase/metabolismo
10.
Cent Nerv Syst Agents Med Chem ; 10(4): 310-6, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20868356

RESUMO

Cerebral ischemia is one of the leading causes of death and disability in industrialized countries, with no curative treatments to date. Identification of potential targets and elucidation of their physiological role under stress conditions may give support to the development of drugs and strategies to contend with this pathology. In the last years, Heme oxygenase-1 (HO-1) has been considered by many groups as a potential target in ischemic damage. HO-1 is the enzyme responsible for the conversion of the heme group to billiverdin, carbon monoxide and iron; a highly regulated cytoprotective enzyme able to respond to numerous chemical or physical stressors, many of which decrease oxygen availability and generate oxidative stress. The disruption of HO-1 activity has been widely associated with a bad outcome in many disorders, and a protective role through its heme catabolism products has been observed in transplantation, cardiac ischemia, limb ischemia/reperfusion and different alterations that involve ischemia and reperfusion events. Here, we review recent reports supporting the protective role of HO-1 in cerebral ischemia. Results on the endogenous HO-1 response, overexpression of HO-1 and compounds that reduce ischemic damage through the induction of HO-1 in cerebral ischemia in in vivo and in vitro models are analyzed.


Assuntos
Isquemia Encefálica/enzimologia , Heme Oxigenase-1/fisiologia , 2,2'-Dipiridil/farmacologia , Animais , Biliverdina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Hemopexina/farmacologia , Heparina/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA