Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 172: 108248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493599

RESUMO

Microalgae plays a crucial role in biomass production within aquatic environments and are increasingly recognized for their potential in generating biofuels, biomaterials, bioactive compounds, and bio-based chemicals. This growing significance is driven by the need to address imminent global challenges such as food and fuel shortages. Enhancing the value chain of bio-based products necessitates the implementation of an advanced screening and monitoring system. This system is crucial for tailoring and optimizing the cultivation conditions, ensuring the lucrative and efficient production of the final desired product. This, in turn, underscores the necessity for robust predictive models to accurately emulate algae growth in different conditions during the initial cultivation phase and simulate their subsequent processing in the downstream stage. In pursuit of these objectives, diverse mechanistic and machine learning-based methods have been independently employed to model and optimize microalgae processes. This review article thoroughly examines the techniques delineated in the literature for modeling, predicting, and monitoring microalgal biomass across various applications such as bioenergy, pharmaceuticals, and the food industry. While highlighting the merits and limitations of each method, we delve into the realm of newly emerging hybrid approaches and conduct an exhaustive survey of this evolving methodology. The challenges currently impeding the practical implementation of hybrid techniques are explored, and drawing inspiration from successful applications in other machine-learning-assisted fields, we review various plausible solutions to overcome these obstacles.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Alimentos
2.
Bioresour Technol ; 390: 129882, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884098

RESUMO

Accurate prediction of microalgae growth is crucial for understanding the impacts of light dynamics and optimizing production. Although various mathematical models have been proposed, only a few of them have been validated in outdoor cultivation. This study aims to investigate the use of machine learning algorithms in microalgae growth modeling. Outdoor cultivation data of Phaeodactylum tricornutum in flat-panel airlift photobioreactors for 50 days were used to compare the performance of Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) with traditional models, namely Monod and Haldane. The results indicate that the machine learning models outperform the traditional models due to their ability to utilize light history as input. Moreover, the LSTM model shows an excellent ability to describe the light acclimation effect. Last, two potential applications of these models are demonstrated: 1) use as a biomass soft sensor and 2) development of an optimal harvest strategy for outdoor cultivation.


Assuntos
Diatomáceas , Microalgas , Fotobiorreatores , Biomassa , Meios de Cultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA