Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Langmuir ; 36(10): 2534-2542, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32073872

RESUMO

A locally organized monolayer film strongly attached to a gold surface is obtained by transfer of a Langmuir-Blodgett (LB) film of octadecylamine (ODA) or alcohol (ODOH) onto a Au surface and simultaneous oxidative electrografting of this film still in contact with the aqueous subphase. As opposed to LB films, these films resist ultrasonication; and unlike electrografted films, they are organized monolayers by construction. They are characterized by AFM (atomic force microscopy), water contact angle, ellipsometry, XPS (X-ray photoelectron spectroscopy), IRRAS (infrared reflection absorption spectroscopy), and GIXD (grazing incidence X-ray diffraction).

2.
Radiat Prot Dosimetry ; 161(1-4): 245-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24594906

RESUMO

In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %.


Assuntos
Nêutrons , Proteção Radiológica/instrumentação , Radiometria/instrumentação , Algoritmos , Calibragem , Eletrônica , Desenho de Equipamento , França , Gases , Íons , Método de Monte Carlo , Prótons , Doses de Radiação , Radiometria/métodos , Espalhamento de Radiação , Raios X
3.
Rev Sci Instrum ; 83(2): 02B912, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380344

RESUMO

Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010)] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.

4.
Rev Sci Instrum ; 81(2): 02B314, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192437

RESUMO

In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA