RESUMO
Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.
Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Imunidade Inata , NeurôniosRESUMO
The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.
Assuntos
Arenavirus , Furina , Humanos , Furina/metabolismo , Proteínas do Envelope Viral/genética , Monensin/metabolismo , Monensin/farmacologia , Arenavirus/genética , Arenavirus/metabolismo , Antivirais/uso terapêuticoRESUMO
The New World (NW) arenaviruses are a diverse group of zoonotic viruses, including several causative agents of severe hemorrhagic fevers in humans. All known human-pathogenic NW arenaviruses belong to clade B, where they group into sublineages with phylogenetically closely related nonpathogenic viruses, e.g., the highly pathogenic Junin (JUNV) and Machupo viruses with the nonpathogenic Tacaribe virus (TCRV). Considering the close genetic relationship of nonpathogenic and pathogenic NW arenaviruses, the identification of molecular determinants of virulence is of great importance. The host cell's innate antiviral defense represents a major barrier for zoonotic infection. Here, we performed a side-by-side comparison of the innate immune responses against JUNV and TCRV in human cells. Despite similar levels of viral replication, infection with TCRV consistently induced a stronger type I interferon (IFN-I) response than JUNV infection did. Transcriptome profiling revealed upregulation of a largely overlapping set of interferon-stimulated genes in cells infected with TCRV and JUNV. Both viruses were relatively insensitive to IFN-I treatment of human cells and induced similar levels of apoptosis in the presence or absence of an IFN-I response. However, in comparison to JUNV, TCRV induced stronger activation of the innate sensor double-strand RNA-dependent protein kinase R (PKR), resulting in phosphorylation of eukaryotic translation initiation factor eIF2α. Confocal microscopy studies revealed similar subcellular colocalizations of the JUNV and TCRV viral replication-transcription complexes with PKR. However, deletion of PKR by CRISPR/Cas9 hardly affected JUNV but promoted TCRV multiplication, providing the first evidence for differential innate recognition and control of pathogenic and nonpathogenic NW arenaviruses by PKR.IMPORTANCE New World (NW) arenaviruses are a diverse family of emerging zoonotic viruses that merit significant attention as important public health problems. The close genetic relationship of nonpathogenic NW arenaviruses with their highly pathogenic cousins suggests that few mutations may be sufficient to enhance virulence. The identification of molecular determinants of virulence of NW arenaviruses is therefore of great importance. Here we undertook a side-by-side comparison of the innate immune responses against the highly pathogenic Junin virus (JUNV) and the related nonpathogenic Tacaribe virus (TCRV) in human cells. We consistently found that TCRV induces a stronger type I interferon (IFN-I) response than JUNV. Transcriptome profiling revealed an overlapping pattern of IFN-induced gene expression and similar low sensitivities to IFN-I treatment. However, the double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) contributed to the control of TCRV, but not JUNV, providing the first evidence for differential innate recognition and control of JUNV and TCRV.
Assuntos
Arenavirus do Novo Mundo/imunologia , Imunidade Inata , Vírus Junin/imunologia , Arenavirus do Novo Mundo/crescimento & desenvolvimento , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/metabolismo , Interferon Tipo I/metabolismo , Vírus Junin/crescimento & desenvolvimento , Replicação Viral , eIF-2 Quinase/metabolismoRESUMO
Immunoglobulin G (IgG) transfer in opposite directions across the small intestinal brush border serves different purposes in early life and in adulthood. In the neonate, maternal IgG is taken up from the gut lumen into the blood, conferring passive immunity to the offspring, whereas in the adult immunoglobulins, including IgG made by plasma cells in the lamina propria, are secreted via the brush border to the lumen as part of the mucosal defense. Here, IgG has been proposed to perform a luminal immune surveillance which eventually includes a reuptake through the brush border as pathogen-containing immune complexes. In the present work, we studied luminal uptake of FITC-conjugated and gold-conjugated IgG in cultured pig jejunal mucosal explants. After 1 h, binding to the brush border was seen in upper crypts and lower parts of the villi. However, no endocytotic uptake into EEA-1-positive compartments was detected, neither at neutral nor acidic pH, despite an ongoing constitutive endocytosis from the brush border, visualized by the polar tracer CF594. The 40-kDa neonatal Fc receptor, FcRn, was present in the microvillus fraction, but noteworthy, a 37 kDa band, most likely a proteolytic cleavage product, bound IgG in a pH-dependent manner more efficiently than did the full-length FcRn. In conclusion, our work does not support the theory that bidirectional transfer of IgG across the intestinal brush border is part of the luminal immune surveillance in the adult.