RESUMO
New astronomical observations point to a nucleosynthesis picture that goes beyond what was accepted until recently. The intermediate "i" process was proposed as a plausible scenario to explain some of the unusual abundance patterns observed in metal-poor stars. The most important nuclear physics properties entering i-process calculations are the neutron-capture cross sections and they are almost exclusively not known experimentally. Here we provide the first experimental constraints on the ^{139}Ba(n,γ)^{140}Ba reaction rate, which is the dominant source of uncertainty for the production of lanthanum, a key indicator of i-process conditions. This is an important step towards identifying the exact astrophysical site of stars carrying the i-process signature.
RESUMO
Delayed γ-ray cascades, originating from the decay of (6âº) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³8U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6âºâ4âº) rate of ¹³6Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 41⺠state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6âºâ4âº) rate of ¹³6Sn. These data provide a key benchmark for shell-model interactions far from stability.
RESUMO
This Letter reports on a systematic study of ß-decay half-lives of neutron-rich nuclei around doubly magic (208)Pb. The lifetimes of the 126-neutron shell isotone (204)Pt and the neighboring (200-202)Ir, (203)Pt, (204)Au are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden ß strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first-forbidden transitions reproduce more satisfactorily the trend in the measured half-lives for the nuclei in this region, where the r-process pathway passes through during ß decay back to stability.
RESUMO
Objective.The results of a follow-up experiment investigating a novel method for sub-milimetre range verification (RV) in proton therapy (PT) are presented.Approach.The method consists of implanting a hadron tumour marker (HTM) near the planned treatment volume, and measuring theγ-ray signals emitted as a result of activation by the proton beam. These signals are highly correlated with the energy of the beam impinging on the HTM and can provide an absolute measurement of the range of the beam relative to the position of the HTM, which is independent of any uncertainties in beam delivery.Main results.Three candidate HTM materials were identified and combined into a single composite HTM, which makes use of the strongest reaction in each material. The setup of the previous experiment was improved on by using high-purity germanium detectors to measure theγ-ray signal with a higher resolution than was previously achieved. A PMMA phantom was also used to simulate theγ-ray background from tissue activation. HTM RV using the data collected in this study yielded range measurements whose average deviation from the expected value was 0.13(22)mm.Significance.Range uncertainty in PT limits the prescribed treatment plan for cancer patients with large safety margins and constrains the direction of the proton beam in relation to any organ at risk. The sub-milimetre range uncertainty achieved in this study using HTM RV, if implemented clinically, would allow for a reduction in the size of safety margins, increasing the therapeutic window for PT.
Assuntos
Germânio , Terapia com Prótons , Humanos , Prótons , Biomarcadores Tumorais , Imagens de FantasmasRESUMO
Objective.A new method to estimate the range of an ion beam in a patient during heavy-ion therapy was investigated, which was previously verified for application in proton therapy.Approach.The method consists of placing a hadron tumour marker (HTM) close to the tumour. As the treatment beam impinges on the HTM, the marker undergoes nuclear reactions. When the HTM material is carefully chosen, the activation results in the emission of several delayed, characteristicγrays, whose intensities are correlated with the remaining range inside the patient. When not just one but two reaction channels are investigated, the ratio between these twoγray emissions can be measured, and the ratio is independent of any beam delivery uncertainties.Main results.A proof-of-principle experiment with an16O ion beam and Ag foils as HTM was successfully executed. The107Ag(16O,x)112Sb and the107Ag(16O,x)114Sb reaction channels were identified as suitable for the HTM technique. When only oneγ-ray emission is measured, the resulting range-uncertainty estimation is at the 0.5 mm scale. When both channels are considered, a theoretical limit on the range uncertainty of a clinical fiducal marker was found to be ±290µm.Significance.Range uncertainty of a heavy-ion beam limits the prescribed treatment plan for cancer patients, especially the direction of the ion beam in relation to any organ at risk. An easy to implement range-verification technique which can be utilized during clinical treatment would allow treatment plans to take full advantage of the sharp fall-off of the Bragg peak without the risk of depositing excessive dose into healthy tissue.
Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Biomarcadores Tumorais , Radioterapia com Íons Pesados/métodos , Terapia com Prótons/métodos , Incerteza , Método de Monte CarloRESUMO
The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)â0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.
RESUMO
In this work, a new method of range verification for proton therapy (PT) is experimentally demonstrated for the first time. If a metal marker is implanted near the tumour site, its response to proton activation will result in the emission of characteristic γ rays. The relative intensity of γ rays originating from competing fusion-evaporation reaction channels provides a unique signature of the average proton energy at the marker, and by extension the beam's range, in vivo and in real time. The clinical feasibility of this method was investigated at the PT facility at TRIUMF with a proof-of-principle experiment which irradiated a naturally-abundant molybdenum foil at various proton beam energies. Delayed characteristic γ rays were measured with two Compton-shielded LaBr3 scintillators. The technique was successfully demonstrated by relating the relative intensity of two γ-ray peaks to the energy of the beam at the Mo target, opening the door to future clinical applications where the range of the beam can be verified in real time.
Assuntos
Raios gama/uso terapêutico , Molibdênio , Terapia com Prótons/métodos , Análise Espectral , Humanos , Método de Monte CarloRESUMO
In this work, we propose a novel technique for in-vivo proton therapy range verification. This technique makes use of a molybdenum hadron tumour marker, implanted at a short distance from the clinical treatment volume. Signals emitted from the marker during treatment can provide a direct measurement of the proton beam energy at the marker's position. Fusion-evaporation reactions between the proton beam and marker nucleus result in the emission of delayed characteristic γ rays, which are detected off-beam for an improved signal-to-noise ratio. In order to determine the viability of this technique and to establish an experimental setup for future work, the Monte Carlo package GEANT4 was used in combination with ROOT to simulate a treatment scenario with the new method outlined in this work. These simulations show that the intensity of delayed γ rays produced from competing reactions yields a precise measurement of the range of the proton beam relative to the marker, with sub-millimetre uncertainty.