Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(6): 822-829, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33305310

RESUMO

MOTIVATION: Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regulatory and functional potential of cells at the individual, population and community levels of organization. Although the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins onto known pathways using a reference database, pathway-centric methods based on heuristics or machine learning to infer pathway presence provide a powerful engine for hypothesis generation in biological systems. Such methods rely on rule sets or rich feature information that may not be known or readily accessible. RESULTS: Here, we present pathway2vec, a software package consisting of six representational learning modules used to automatically generate features for pathway inference. Specifically, we build a three-layered network composed of compounds, enzymes and pathways, where nodes within a layer manifest inter-interactions and nodes between layers manifest betweenness interactions. This layered architecture captures relevant relationships used to learn a neural embedding-based low-dimensional space of metabolic features. We benchmark pathway2vec performance based on node-clustering, embedding visualization and pathway prediction using MetaCyc as a trusted source. In the pathway prediction task, results indicate that it is possible to leverage embeddings to improve prediction outcomes. AVAILABILITY AND IMPLEMENTATION: The software package and installation instructions are published on http://github.com/pathway2vec. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Genômica , Aprendizado de Máquina , Proteínas/genética
2.
PLoS Comput Biol ; 16(10): e1008174, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001968

RESUMO

Metabolic inference from genomic sequence information is a necessary step in determining the capacity of cells to make a living in the world at different levels of biological organization. A common method for determining the metabolic potential encoded in genomes is to map conceptually translated open reading frames onto a database containing known product descriptions. Such gene-centric methods are limited in their capacity to predict pathway presence or absence and do not support standardized rule sets for automated and reproducible research. Pathway-centric methods based on defined rule sets or machine learning algorithms provide an adjunct or alternative inference method that supports hypothesis generation and testing of metabolic relationships within and between cells. Here, we present mlLGPR, multi-label based on logistic regression for pathway prediction, a software package that uses supervised multi-label classification and rich pathway features to infer metabolic networks in organismal and multi-organismal datasets. We evaluated mlLGPR performance using a corpora of 12 experimental datasets manifesting diverse multi-label properties, including manually curated organismal genomes, synthetic microbial communities and low complexity microbial communities. Resulting performance metrics equaled or exceeded previous reports for organismal genomes and identify specific challenges associated with features engineering and training data for community-level metabolic inference.


Assuntos
Genômica/métodos , Aprendizado de Máquina , Redes e Vias Metabólicas/genética , Algoritmos , Bases de Dados Genéticas , Modelos Logísticos , Proteobactérias/genética , Proteobactérias/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA