RESUMO
Cyanobacteria are resilient microorganisms and thrive in environments exposed to UV radiation, ranging from ocean surfaces to scorching hot springs and dry expanses. 'Cyanobacterial Resilience' refers to their ability to withstand UV radiation, revealing intricate genomic secrets and adaptive mechanisms ensuring survival. These mechanisms include metabolic adaptations, robust DNA repair systems and UV-protective compounds such as Scytonemin and Mycosporine, vital for shielding against UV radiation survival. Cyanobacteria are crucial pioneers in UV-exposed ecosystems, highlighting their resilience and adaptability. Some cyanobacteria exhibit luminescence, emitting blue-green light due to phycobiliproteins, while bioluminescence in cyanobacteria, if it occurs, involves different compounds rather than luciferins and luciferase enzymes. This luminescence holds promise for various biotechnological applications, such as biosensors, imaging probes and carbon sequestration, for participating in photocatalytic processes for water purification and CO2 conversion, and contributes to solar simulation studies to advance photosynthesis and renewable energy technologies. The versatile applications of these materials highlight their ecological importance and potential in addressing global challenges. In conclusion, 'Cyanobacterial Resilience' highlights the remarkable adaptation strategies of cyanobacteria in UV-exposed environments. It emphasises their role as pioneers and innovators in biological and technological domains, providing insights into their enduring impact on ecosystems and scientific advancement.
Assuntos
Cianobactérias , Ecossistema , Raios Ultravioleta , Cianobactérias/metabolismo , Cianobactérias/química , Fluorescência , LuminescênciaRESUMO
There is a shred of evidence to suggest that Emblica officinalis Gaertn, the botanical name for amla seeds, has greater medicinal potential than amla fruit. We conducted this work to assess the anti-inflammatory, antibacterial, and antioxidant capacities of E. officinalis seed extracts. The bioactive components from the seeds were fractionated using chloroform, hexane, methanol, and diethyl ether, according to the polarity of the solvents. The total amount of phenolic and flavonoid was estimated. Both the reducing power and antioxidant capacities of the extracts were evaluated using the DPPH (1,1-diphenyl-2-picryl-hydrazyl) technique. 15-lipoxygenase (LOX) was inhibited by seed extracts at doses ranging from 5 to 25 micrograms. In silico docking was employed to assess the results. Some human pathogenic microorganisms were tested for their antibacterial activity using the agar disc diffusion method. Escherichia coli, Proteus vulgaris, and Klebsiella pneumonia were inhibited by a methanolic extract with an IC50 value of 58g, making it the most common organic solvent extract. Methanolic extracts also showed good antioxidant and antibacterial activity. Our investigation led us to discover that amla seeds have anti-inflammatory, antioxidant, and antibacterial effects.