Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Angew Chem Int Ed Engl ; 62(37): e202304494, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37464980

RESUMO

Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.

2.
Angew Chem Int Ed Engl ; 60(5): 2485-2492, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079422

RESUMO

Surface passivation of perovskite solar cells (PSCs) using a low-cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA, N,N-bis(tert-butyloxycarbonyl)-quinacridone (TBOC-QA), followed by thermal annealing to convert TBOC-QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3 ) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3 thin films to 77.2° for QA coated MAPbI3 thin films. The stability of QA passivated MAPbI3 perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.

3.
J Am Chem Soc ; 142(37): 16001-16006, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32870668

RESUMO

Low-dimensional perovskite-related metal halides have emerged as a new class of light-emitting materials with tunable broadband emission from self-trapped excitons (STEs). Although various types of low-dimensional structures have been developed, fundamental understating of the structure-property relationships for this class of materials is still very limited, and further improvement of their optical properties remains greatly important. Here, we report a significant pressure-induced photoluminescence (PL) enhancement in a one-dimensional hybrid metal halide C4N2H14PbBr4, and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations. Under a gigapascal pressure scale, the PL quantum yields (PLQYs) were quantitatively determined to show a dramatic increase from the initial value of 20% at ambient conditions to over 90% at 2.8 GPa. With in situ characterization of photophysical properties and theoretical analysis, we found that the PLQY enhancement was mainly attributed to the greatly suppressed nonradiative decay. Pressure can effectively tune the energy level of self-trapped states and increase the exciton binding energy, which leads to a larger Stokes shift. The resulting highly localized excitons with stronger binding reduce the probability for carrier scattering, to result in the significantly suppressed nonradiative decay. Our findings clearly show that the characteristics of STEs in low-dimensional metal halides can be well-tuned by external pressure, and enhanced optical properties can be achieved.

4.
Inorg Chem ; 59(18): 13109-13116, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32865987

RESUMO

Binuclear platinum(II) complexes with strong Pt-Pt interactions are an interesting class of luminescent materials, of which photophysical properties could be controlled via multiple ways through organic ligands and Pt-Pt distance. While a number of binuclear platinum(II) complexes have been developed with tunable emissions, achieving high photoluminescence quantum efficiency (PLQE) remains challenging and of great interest. Here we report the synthesis and characterization of a series of binuclear 2,4-difluorophenylpyridine platinum(II) complexes bridged by thiazol-2-thiolate ligands with different bulkiness. The three complexes were found to have short Pt-Pt distances ranging from 2.916 to 2.945 Å. The strong Pt-Pt interactions lead to pronounced metal-metal-to-ligand charge transfer (MMLCT) absorptions between 450 and 500 nm, and strong 3MMLCT emissions in the orange/red region. The PLQEs of the new complexes are in the ranges of 2-31% in solution and 26-100% in solid state. These complexes also exhibit excellent stability in halogenated solvents.

5.
Angew Chem Int Ed Engl ; 59(51): 23067-23071, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32876977

RESUMO

The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2 MXn (MXn =SbCl5 , MnCl4 , ZnCl4 , ZnCl2 Br2 , ZnBr4 ), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+ cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl5 2- and MnCl4 2- , but significantly enhanced for the hybrids containing wide band gap non-emissive ZnCl4 2- . Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π-π stacking and intermolecular electronic coupling between TPP+ cations in TPP2 ZnCl4 than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2 ZnX4 can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.

6.
Angew Chem Int Ed Engl ; 59(33): 14120-14123, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392395

RESUMO

Zero-dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4 PbMn0.69 Sn0.31 Br8 , in which the organic cation N-benzylhexamethylenetetrammonium (HMTA+ , C13 H19 N4 + ) cocrystallizes with PbBr4 2- , MnBr4 2- , and SnBr4 2- . The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single-crystalline "host-guest" system to exhibit emissions from multiple "guest" metal halide species simultaneously. The combination of these emissions led to near-perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm- to cool-white emissions could be generated by controlling the excitation wavelength.

7.
J Am Chem Soc ; 140(41): 13181-13184, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30230822

RESUMO

The rich chemistry of organic-inorganic metal halide hybrids has enabled the development of a variety of crystalline structures with controlled morphological and molecular dimensionalities. Here we report for the first time a single crystalline assembly of metal halide clusters, (C9NH20)7(PbCl4)Pb3Cl11, in which lead chloride tetrahedrons (PbCl42-) and face-sharing lead chloride trimer clusters (Pb3Cl115-) cocrystallize with organic cations (C9NH20+) to form a periodical zero-dimensional (0D) structure at the molecular level. Blue light emission peaked at 470 nm with a photoluminescence quantum efficiency (PLQE) of around 83% was realized for this single crystalline hybrid material, which is attributed to the individual lead chloride clusters. Our discovery of single crystalline assembly of metal halide clusters paves a new path to functional cluster assemblies with highly tunable structures and remarkable properties.

8.
Nano Lett ; 17(8): 4831-4839, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28661680

RESUMO

Organic-inorganic hybrid perovskites have shown great potential as building blocks for low-cost optoelectronics for their exceptional optical and electrical properties. Despite the remarkable progress in device demonstration, fundamental understanding of the physical processes in halide perovskites remains limited, especially the unusual electronic behaviors such as the current-voltage hysteresis and the switchable photovoltaic effect. These phenomena are of particular interests for being closely related to device functionalities and performance. In this work, a microscopic picture of electric fields in halide perovskite thin films was obtained using scanning laser microscopy. Unlike conventional semiconductors, distribution of the built-in electric fields in the halide perovskite evolves dynamically under the stimulation of external biases. The observations can be well explained using a model based on field-assisted ion migration, indicating that the mechanism responsible for the evolving charge transport observed in this material is not purely electronic. The anomalous dynamic responses to the applied bias are found to be effectively suppressed by operating the devices at reduced temperature or processing the materials at elevated temperature, which provide potential strategies for designing and creating halide perovskites with more stable charge transport properties in the development of viable perovskite-based optoelectronics.

9.
Angew Chem Int Ed Engl ; 57(4): 1021-1024, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29215786

RESUMO

The synthesis and characterization is reported of (C9 NH20 )2 SnBr4 , a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr42- ) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C9 NH20+ ). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. The unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr42- species, and 2) the seesaw structure enabling a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.

10.
Chemistry ; 23(70): 17734-17739, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29044745

RESUMO

Photoinduced structural changes (PSC) is one of the fundamental excited-state dynamic processes, and yet often very challenging to distinguish from competing electronic excited-state relaxation channels having similar or even comparable timescales. Here, we report a detailed study on the PSC of a pyrazolate bridged platinum(II) binuclear complex, BFPtPZ (C^NPt(µ-pz')2 PtC^N, C^N=2-(2,4-difluorophenyl)pyridine, pz'=pyrazolate), a molecular butterfly, using time-correlated single photon counting measurements at different wavelengths and sample temperatures. Analysis of the results obtained using dichloromethane (DCM) and ethylene carbonate (EC) as solvents enabled us to reveal an unexpected, strong solvent effect on the PSC processes. We show that a rapid PSC process with a characteristic timescale of 323 ps is observed in DCM, which leads to an excitation equilibrium between the ligand center/metal-to-ligand charge transfer (3 LC/MLCT) and metal-metal-to-ligand charge transfer (3 MMLCT) triplet states. The subsequent relaxation from these electronic states to the ground state takes place in several nanoseconds. In contrast, the corresponding PSC process in EC appears slow at all temperatures studied in our experiments and showed no sign of such excitation equilibrium. The observed solvent effect is found to arise from distinct solvent properties including their viscosities and polarities as well as the peculiar electronic excited-states of the butterfly-like molecules with charge transfer character.

11.
Angew Chem Int Ed Engl ; 56(31): 9018-9022, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573667

RESUMO

Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C4 N2 H14 )SnBr4 and 0D (C4 N2 H14 Br)4 SnBr6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure.

12.
Inorg Chem ; 55(17): 8564-9, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27500886

RESUMO

We report precise manipulation of the potential-energy surfaces (PESs) of a series of butterfly-like pyrazolate-bridged platinum binuclear complexes, by synthetic control of the electronic structure of the cyclometallating ligand and the steric bulkiness of the pyrazolate bridging ligand. Color tuning of dual emission from blue/red, to green/red and red/deep red were achieved for these phosphorescent molecular butterflies, which have two well-controlled energy minima on the PESs. The environmentally dependent photoluminescence of these molecular butterflies enabled their application as self-referenced luminescent viscosity sensor.

13.
Nano Lett ; 14(2): 967-71, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24397343

RESUMO

Using an ultrathin (∼ 15 nm in thickness) molybdenum oxide (MoOx, x < 3) layer as a transparent hole selective contact to n-type silicon, we demonstrate a room-temperature processed oxide/silicon solar cell with a power conversion efficiency of 14.3%. While MoOx is commonly considered to be a semiconductor with a band gap of 3.3 eV, from X-ray photoelectron spectroscopy we show that MoOx may be considered to behave as a high workfunction metal with a low density of states at the Fermi level originating from the tail of an oxygen vacancy derived defect band located inside the band gap. Specifically, in the absence of carbon contamination, we measure a work function potential of ∼ 6.6 eV, which is significantly higher than that of all elemental metals. Our results on the archetypical semiconductor silicon demonstrate the use of nm-thick transition metal oxides as a simple and versatile pathway for dopant-free contacts to inorganic semiconductors. This work has important implications toward enabling a novel class of junctionless devices with applications for solar cells, light-emitting diodes, photodetectors, and transistors.

14.
Angew Chem Int Ed Engl ; 54(33): 9591-5, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26212689

RESUMO

Photoinduced structural change (PSC) is a fundamental excited-state dynamic process in chemical and biological systems. However, precise control of PSC processes is very challenging, owing to the lack of guidelines for designing excited-state potential energy surfaces (PESs). A series of rationally designed butterfly-like phosphorescent binuclear platinum complexes that undergo controlled PSC by Pt-Pt distance shortening and exhibit tunable dual (greenish-blue and red) emission are herein reported. Based on the Bell-Evans-Polanyi principle, it is demonstrated how the energy barrier of the PSC, which can be described as a chemical-reaction-like process between the two energy minima on the first triplet excited-state PES, can be controlled by synthetic means. These results reveal a simple method to engineer the dual emission of molecular systems by manipulating PES to control PSC.

15.
Nat Mater ; 12(10): 899-904, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872732

RESUMO

Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

16.
Nano Lett ; 13(11): 5425-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143966

RESUMO

We report visible light and X-ray imagers on lightweight and mechanically flexible plastic substrates. The process involves solution processing of organic photodetectors on top of an active-matrix backplane consisting of carbon nanotube thin-film transistors. The system takes advantage of the high mobility of nanotube transistors for low operating voltages and efficient light absorption of organic bulk-heterojunctions for high imaging sensitivity. With this highly scalable process scheme, 18 × 18 pixel-array flexible imagers (physical size of 2 cm × 1.5 cm) with high performance are successfully demonstrated. In addition, as the absorption peak of the adopted organic photodiodes covers the green band of the light spectrum, X-ray imaging is readily demonstrated by placing a scintillator film on top of the flexible imagers.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Humanos , Luz , Tamanho da Partícula , Propriedades de Superfície , Transistores Eletrônicos , Raios X
17.
Angew Chem Int Ed Engl ; 53(41): 10908-12, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25159533

RESUMO

A butterfly-like phosphorescent platinum(II) binuclear complex can undergo a molecular structure change in which the Pt-Pt distance shortens upon photoexcitation, which leads to the formation of two distinct excited states and dual emission in the steady state, that is, greenish-blue emission from the high-energy excited state at the long Pt-Pt distance and red emission from the low-energy excited state at the short Pt-Pt distance. This photoinduced molecular structure change has a strong dependence on the molecule's surrounding environment, allowing its application as self-referenced luminescent sensor for solid-liquid phase change, viscosity, and temperature, with greenish-blue emission in solid matrix and rising red emission in molten liquid phase. With proper control of the surrounding media to manipulate the structural change and photophysical properties, a broad white emission can be achieved from this molecular butterfly.

18.
Mater Horiz ; 11(13): 3076-3081, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639053

RESUMO

The expanding applications of X-ray scintillation across various areas, from healthcare to security detection call for the development of new-generation scintillators that offer enhanced sensitivity, efficiency, and versatility. Here, we report for the first time the use of organic metal halide complexes with aggregation-induced emission (AIE) for X-ray scintillation, which can be facilely synthesized and processed in the solution phase. By reacting an AIE organic molecule, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyridinium (TPA-PD) with zinc chloride (ZnCl2) in solution at room temperature, an organic metal halide complex, (TPA-PD)2ZnCl2, is produced with a high synthetic yield of 87%. Optical and radioluminescence characterizations find that (TPA-PD)2ZnCl2 exhibits bluish-green photoluminescence and radioluminescence peaked at around 450 nm, with a photoluminescence quantum efficiency (PLQE) of 65%, and an absolute light yield of 13 423 Photon per MeV. Moreover, short photoluminescence and radioluminescence decay lifetimes are recorded at 1.81 ns and 5.24 ns, respectively. For X-ray scintillation, an excellent response dose-response linearity and a low limit of detection of 80.23 nGyair S-1 are obtained for (TPA-PD)2ZnCl2. By taking advantage of the high X-ray absorption of metal halides and fast radioluminescence of AIE molecules, our design of covalently bonded organic metal halide complexes opens up new opportunities for the development of high-performance solution-processable scintillators.

19.
Chem Commun (Camb) ; 59(25): 3711-3714, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896804

RESUMO

Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C8H28N5Pb3Cl11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.

20.
Adv Mater ; 35(9): e2209417, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524448

RESUMO

Zero-dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near-unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9-phenyl-9H-carbazol-3-yl) phosphonium antimony bromide (TPPcarzSbBr4 ), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+ ) and light emitting antimony bromide anions (Sb2 Br8 2- ), is reported. By replacing one of the phenyl groups in a well-known tetraphenylphosphonium cation (TPP+ ) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+ cation is developed for the preparation of red emitting 0D TPPcarzSbBr4 single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4 thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m-2 , and a current efficiency of 14.2 cd A-1 , which are the best values reported to date for electroluminescence devices based on 0D OMHHs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA