Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674133

RESUMO

The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Polimorfismo de Nucleotídeo Único , RNA-Seq , Camellia sinensis/genética , Camellia sinensis/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Mutação , Fenótipo , Lignina/metabolismo , Lignina/biossíntese , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Pflugers Arch ; 470(2): 439-448, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143938

RESUMO

Blood pressure is controlled by tonic sympathetic activities, excessive activation of which contributes to the pathogenesis and progression of hypertension. Interleukin (IL)-1ß in the paraventricular nucleus (PVN) is involved in sympathetic overdrive and hypertension. Here, we investigated the therapeutic effects of IL-1 receptor type I (IL-1R1) gene silencing in the PVN on hypertension. Recombinant lentivirus vectors expressing a short hairpin RNA (shRNA) targeting IL-1R1 (Lv-shR-IL-1R1) or a control shRNA were microinjected into PVN of spontaneously hypertensive rats (SHRs) and normotensive WKY rats. The fluorescence of green fluorescent protein-labelled vectors appeared at 2 weeks after injection and persisted for at least 8 weeks. IL-1R1 protein expression in the PVN was reduced 4 weeks after Lv-shR-IL-1R1 injection in SHRs. IL-1R1 interference also reduced basal sympathetic activity, cardiac sympathetic afferent reflex in SHRs. Depressor effects were observed from week 2 to 10 after Lv-shR-IL-1R1 treatment in SHRs, with the most prominent effects seen at the end of week 4. Furthermore, Lv-shR-IL-1R1 treatment decreased the ratio of left ventricular weight to body weight and cross-sectional areas of myocardial cells in SHRs. Additionally, Lv-shR-IL-1R1 treatment prevented an increase in superoxide anion and pro-inflammatory cytokines (PICs, TNF-α and IL-1ß) in the PVN of SHR, and upregulated anti-inflammatory cytokine (AIC, IL-10) expression. These results indicate that shRNA interference targeting IL-1R1 in the PVN decreases arterial blood pressure, attenuates excessive sympathetic activity and cardiac sympathetic afferent reflex, and improves myocardial remodelling in SHRs by restoring the balance between PICs and AICs to attenuate oxidative stress.


Assuntos
Hipertensão/terapia , Núcleo Hipotalâmico Paraventricular/metabolismo , Terapêutica com RNAi/métodos , Receptores Tipo I de Interleucina-1/genética , Animais , Coração/fisiologia , Masculino , Miocárdio/metabolismo , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores Tipo I de Interleucina-1/metabolismo , Reflexo , Sistema Nervoso Simpático/fisiologia
3.
Planta ; 245(3): 523-538, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27896431

RESUMO

MAIN CONCLUSION: Functional allelic variants of the flavonoid 3',5'-hydroxylase (F3'5'H) gene provides new information of F3'5'H function of tea plant and its relatives. This insight may serve as the foundation upon which to advance molecular breeding in the tea plant. Catechins are the active components of tea that determine its quality and health attributes. This study established the first integrated genomic strategy for deciphering the genetic basis of catechin traits of tea plant. With the RNA-sequencing analysis of bulked segregants representing the tails of a F1 population segregated for total catechin content, we identified a flavonoid 3',5'-hydroxylase (F3'5'H) gene. F3'5'H had one copy in the genomic DNA of tea plant. Among 202 tea accessions, we identified 120 single nucleotide polymorphisms (SNPs) at F3'5'H locus. Seventeen significant marker-trait associations were identified by association mapping in multiple environments, which were involved in 10 SNP markers, and the traits including the ratio of di/tri-hydroxylated catechins and catechin contents. The associated individual and combination of SNPs explained 4.5-25.2 and 53.0-63.0% phenotypic variations, respectively. In the F1 population (validation population), the catechin trait variation percentages explained by F3'5'H diplotype were 6.9-74.3%. The genotype effects of ten functional SNPs in the F1 population were all consistent with the association population. Furthermore, the function of SNP-711/-655 within F3'5'H was validated by gene expression analysis. Altogether, our work indicated functional SNP allelic variants within F3'5'H governing the ratio of di/tri-hydroxylated catechins and catechin contents. The strong catechin-associated SNPs identified in this study can be used for future marker-assisted selection to improve tea quality.


Assuntos
Alelos , Camellia sinensis/enzimologia , Camellia sinensis/genética , Catequina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Característica Quantitativa Herdável , Vias Biossintéticas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
4.
BMC Plant Biol ; 16(1): 195, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609021

RESUMO

BACKGROUND: The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. RESULTS: We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher ß-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. CONCLUSIONS: Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.


Assuntos
Camellia sinensis/genética , Carotenoides/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Vias Biossintéticas , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Carotenoides/biossíntese , Clorofila/metabolismo , Perfilação da Expressão Gênica , Glutamatos/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
5.
Can J Physiol Pharmacol ; 94(5): 534-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26963333

RESUMO

Increasing evidence indicates a link between sympathetic nervous system activation and obesity, but the underlying mechanisms remain elusive. The adipose afferent reflex (AAR) is a sympathoexcitatory reflex that is activated by afferent neurotransmission from the white adipose tissue (WAT). This study aimed to investigate whether the hypothalamic paraventricular nucleus (PVH) is an important component of the central neurocircuitry of the AAR. In anesthetized rats, the discharge activity of individual PVH neurons was recorded in vivo. Activation of WAT afferents was initiated by capsaicin injection, and the AAR was evaluated by monitoring renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses. The responses of PVH neurons to activation of WAT afferents were evaluated by c-fos immunoreactivity and the discharge activity of individual PVH neurons, which was recorded using extracellular single-unit recording. After activation of WAT afferents, both individual PVH neuron discharge activity and c-fos immunoreactivity increased. Bilateral selective lesions of the neurons in the PVH with kainic acid abolished the AAR. These results indicate that PVH is an important component of the central neurocircuitry of the AAR.


Assuntos
Tecido Adiposo Branco/inervação , Modelos Neurológicos , Neurônios Aferentes/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Capsaicina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Canal Inguinal , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/inervação , Gordura Intra-Abdominal/metabolismo , Ácido Caínico/farmacologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Espaço Retroperitoneal , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica/efeitos dos fármacos
6.
J Neurosci ; 33(13): 5773-84, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536090

RESUMO

Ubiquitous classical (typical) calpains, calpain-1 and calpain-2, are Ca(+2)-dependent cysteine proteases, which have been associated with numerous physiological and pathological cellular functions. However, a clear understanding of the role of calpains in the CNS has been hampered by the lack of appropriate deletion paradigms in the brain. In this study, we describe a unique model of conditional deletion of both calpain-1 and calpain-2 activities in mouse brain, which more definitively assesses the role of these ubiquitous proteases in brain development/function and pathology. Surprisingly, we show that these calpains are not critical for gross CNS development. However, calpain-1/calpain-2 loss leads to reduced dendritic branching complexity and spine density deficits associated with major deterioration in hippocampal long-term potentiation and spatial memory. Moreover, calpain-1/calpain-2-deficient neurons were significantly resistant to injury induced by excitotoxic stress or mitochondrial toxicity. Examination of downstream target showed that the conversion of the Cdk5 activator, p35, to pathogenic p25 form, occurred only in the presence of calpain and that it played a major role in calpain-mediated neuronal death. These findings unequivocally establish two central roles of calpain-1/calpain-2 in CNS function in plasticity and neuronal death.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Encéfalo , Calpaína/deficiência , Potenciação de Longa Duração/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/fisiopatologia , Bromodesoxiuridina/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Dendritos/metabolismo , Dendritos/patologia , Dendritos/ultraestrutura , Modelos Animais de Doenças , Estimulação Elétrica , Embrião de Mamíferos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Técnicas In Vitro , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosfotransferases , Desempenho Psicomotor , RNA Mensageiro/metabolismo , Coloração pela Prata , Transfecção
7.
BMC Genomics ; 14: 415, 2013 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23799877

RESUMO

BACKGROUND: Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants. RESULTS: Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the "carbohydrate metabolism pathway" and the "calcium signaling pathway" might play a vital role in tea plants' responses to cold stress. CONCLUSIONS: Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.


Assuntos
Aclimatação/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Perfilação da Expressão Gênica , Camellia sinensis/citologia , Camellia sinensis/metabolismo , Membrana Celular/metabolismo , Genes de Plantas/genética , Anotação de Sequência Molecular , Osmose , RNA de Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais/genética
8.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040977

RESUMO

Free amino acids are one of the main chemical components in tea, and they contribute to the pleasant flavor, function, and quality of tea, notably the level of theanine. Here, a high-density genetic map was constructed to characterize quantitative trait loci (QTLs) for free amino acid content. A total of 2688 polymorphic SNP markers were obtained using genotyping-by-sequencing (GBS) based on 198 individuals derived from a pseudotestcross population of "Longjing 43" × "Baijiguan", which are elite and albino tea cultivars, respectively. The 1846.32 cM high-density map with an average interval of 0.69 cM was successfully divided into 15 linkage groups (LGs) ranging from 93.41 cM to 171.28 cM. Furthermore, a total of 4 QTLs related to free amino acid content (theanine, glutamate, glutamine, aspartic acid and arginine) identified over two years were mapped to LG03, LG06, LG11 and LG14. The phenotypic variation explained by these QTLs ranged from 11.8% to 23.7%, with an LOD score from 3.56 to 7.7. Furthermore, several important amino acid metabolic pathways were enriched based on the upregulated differentially expressed genes (DEGs) among the offspring. These results will be essential for fine mapping genes involved in amino acid pathways and diversity, thereby providing a promising avenue for the genetic improvement of tea plants.

9.
Synapse ; 65(11): 1181-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21633974

RESUMO

Glycine serves a dual role in neurotransmission. It is the primary inhibitory neurotransmitter in the spinal cord and brain stem and is also an obligatory coagonist at the excitatory glutamate, N-methyl-D-aspartate receptor (NMDAR). Therefore, the postsynaptic action of glycine should be strongly regulated to maintain a balance between its inhibitory and excitatory inputs. The glycine concentration at the synapse is tightly regulated by two types of glycine transporters, GlyT1 and GlyT2, located on nerve terminals or astrocytes. Genetic studies demonstrated that homozygous (GlyT1-/-) newborn mice display severe sensorimotor deficits characterized by lethargy, hypotonia, and hyporesponsivity to tactile stimuli and ultimately die in their first postnatal day. These symptoms are similar to those associated with the human disease glycine encephalopathy in which there is a high level of glycine in cerebrospinal fluid of affected individuals. The purpose of this investigation is to determine the impact of chronically high concentrations of endogenous glycine on glutamatergic neurotransmission during postnatal development using an in vivo mouse model (GlyT1+/-). The results of our study indicate the following; that compared with wild-type mice, CA1 pyramidal neurons from mutants display significant disruptions in hippocampal glutamatergic neurotransmission, as suggested by a faster kinetic of NMDAR excitatory postsynaptic currents, a lower reduction of the amplitude of NMDAR excitatory postsynaptic currents by ifenprodil, no difference in protein expression for NR2A and NR2B but a higher protein expression for PSD-95, an increase in their number of synapses and finally, enhanced neuronal excitability.


Assuntos
Região CA1 Hipocampal/metabolismo , Ácido Glutâmico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Glicina/metabolismo , Inibição Neural/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/fisiologia , Ácido Glutâmico/fisiologia , Glicina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos
10.
Front Plant Sci ; 12: 730651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589106

RESUMO

Tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most important economic crops with multiple mutants. Recently, we found a special tea germplasm that has an aberrant tissue on its branches. To figure out whether this aberrant tissue is associated with floral bud (FB) or dormant bud (DB), we performed tissue section, transcriptome sequencing, and metabolomic analysis of these tissues. Longitudinal sections indicated the aberrant tissue internal structure was more like a special bud (SB), but was similar to that of DB. Transcriptome data analysis showed that the number of heterozygous and homozygous SNPs was significantly different in the aberrant tissue compared with FB and DB. Further, by aligning the unmapped sequences of the aberrant tissue to the Non-Redundant Protein Sequences (NR) database, we observed that 36.13% of unmapped sequences were insect sequences, which suggested that the aberrant tissue might be a variation of dormant bud tissue influenced by the interaction of tea plants and insects or pathogens. Metabolomic analysis showed that the differentially expressed metabolites (DEMs) between the aberrant tissue and DB were significantly enriched in the metabolic pathways of biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Subsequently, we analyzed the differentially expressed genes (DEGs) in the above mentioned two tissues, and the results indicated that photosynthetic capacity in the aberrant tissue was reduced, whereas the ethylene, salicylic acid and jasmonic acid signaling pathways were activated. We speculated that exogenous infection induced programmed cell death (PCD) and increased the lignin content in dormant buds of tea plants, leading to the formation of this aberrant tissue. This study advanced our understanding of the interaction between plants and insects or pathogens, providing important clues about biotic stress factors and key genes that lead to mutations and formation of the aberrant tissue.

11.
J Agric Food Chem ; 68(39): 11026-11037, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32902975

RESUMO

Tea plants adjust development and metabolism by integrating environmental and endogenous signals in complex but poorly defined gene networks. Here, we present an integrative analysis framework for the identification of conserved modules controlling important agronomic traits using a comprehensive collection of RNA-seq datasets in Camellia plants including 189 samples. In total, 212 secondary metabolism-, 182 stress response-, and 182 tissue development-related coexpressed modules were revealed. Functional modules (e.g., drought response, theobromine biosynthesis, and new shoot development-related modules) and potential regulators that were highly conserved across diverse genetic backgrounds and/or environmental conditions were then identified by cross-experiment comparisons and consensus clustering. Moreover, we investigate the preservation of gene networks between Camellia sinensis and other Camellia species. This revealed that the coexpression patterns of several recently evolved modules related to secondary metabolism and environmental adaptation were rewired and showed higher connectivity in tea plants. These conserved modules are excellent candidates for modeling the core mechanism of tea plant development and secondary metabolism and should serve as a great resource for hypothesis generation and tea quality improvement.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/genética , Metabolismo Secundário , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Agric Food Chem ; 68(30): 8068-8079, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32633946

RESUMO

The young leaves and shoots of albino tea cultivars are usually characterized as having a yellow or pale color, high amino acid, and low catechin. Increasing attention has been paid to albino tea cultivars in recent years because their tea generally shows high umami and reduced astringency. However, the genetic mechanism of yellow-leaf variation in albino tea cultivar has not been elucidated clearly. In this study, bulked segregant RNA-seq (BSR-seq) was performed on bulked yellow- and green-leaf hybrid progenies from a leaf color variation population. A total of 359 and 1134 differentially expressed genes (DEGs) were identified in the yellow and green hybrid bulked groups (Yf vs Gf) and parent plants (Yp vs Gp), respectively. The significantly smaller number of DEGs in Yf versus Gf than in Yp versus Gp indicated that individual differences could be reduced within the same hybrid progeny. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed that the photosynthetic antenna protein was most significantly enriched in either the bulked groups or their parents. Interaction was found among light-harvesting chlorophyll a/b -binding proteins (LHC), heat shock proteins (HSPs), and enzymes involved in cuticle formation. Combined with the transcriptomic expression profile, results showed that the repressed genes encoding LHC were closely linked to aberrant chloroplast development in yellow-leaf tea plants. Furthermore, the photoprotection and light stress response possessed by genes involved in HSP protein interaction and cuticle formation were discussed. The expression profile of DEGs was verified via quantitative real-time PCR analysis of the bulked samples and other F1 individuals. In summary, using BSR-seq on a hybrid population eliminated certain disturbing effects of genetic background and individual discrepancy, thereby helping this study to intensively focus on the key genes controlling leaf color variation in yellow-leaf tea plants.


Assuntos
Camellia sinensis/genética , Fotossíntese , Camellia sinensis/química , Camellia sinensis/metabolismo , Cor , Regulação da Expressão Gênica de Plantas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq , Transcriptoma
13.
J Agric Food Chem ; 67(35): 9967-9978, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403784

RESUMO

Following the recent completion of the draft genome sequence of the tea plant, high-throughput decoding of gene function, especially for those involved in complex secondary metabolic pathways, has become a major challenge. Here, we profiled the metabolome and transcriptome of 11 tea cultivars, and then illustrated a weighted gene coexpression network analysis (WGCNA)-based system biological strategy to interpret metabolomic flux, predict gene functions, and mine key regulators involved in the flavonoid biosynthesis pathway. We constructed a multilayered regulatory network, which integrated the gene coexpression relationship with the microRNA target and promoter cis-regulatory element information. This allowed us to reveal new uncharacterized TFs (e.g., MADSs, WRKYs, and SBPs) and microRNAs (including 17 conserved and 15 novel microRNAs) that are potentially implicated in different steps of the catechin biosynthesis. Furthermore, we applied metabolic-signature-based association method to capture additional key regulators involved in catechin pathway. This provides important clues for the functional characterization of five SCPL1A acyltransferase family members, which might be implicated in the production balance of anthocyanins, galloylated catechins, and proanthocyanins. Application of an "omics"-based system biology strategy should facilitate germplasm utilization and provide valuable resources for tea quality improvement.


Assuntos
Camellia sinensis/metabolismo , Flavonoides/química , Redes Reguladoras de Genes , Camellia sinensis/química , Camellia sinensis/classificação , Camellia sinensis/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica , Folhas de Planta/química , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
14.
J Agric Food Chem ; 67(8): 2408-2419, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30721059

RESUMO

The effects of blue (BL) and green light (GL) treatment during the dark period were examined in Camellia sinensis as a first step to understanding the spectral effects of artificial BL and GL on plant secondary metabolism and light signaling interactions. BL could induce the expression of CRY2/3, SPAs, HY5, and R2R3-MYBs to promote the accumulation of anthocyanins and catechins in tea plants. GL, on the other hand, could stimulate the accumulation of several functional substances (e.g., procyanidin B2/B3 and l-ascorbate) and temper these BL responses via down-regulation of  CRY2/3 and PHOT2. Furthermore, the molecular events that triggered by BL and GL signals were partly overlapped with abiotic/biotic stress responses. We indicate the possibility of a targeted use of BL and GL to regulate the amount of functional metabolites to enhance tea quality and taste, and to potentially trigger defense mechanisms of tea plants.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/efeitos da radiação , Flavonoides/biossíntese , Folhas de Planta/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá/química , Transcriptoma/efeitos da radiação
15.
Neuroscience ; 406: 389-404, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30926548

RESUMO

The over-activation of N-methyl-D-aspartate receptors (NMDARs) is the main cause of neuronal death in brain ischemia. Both the NMDAR and the Acid-sensing ion channel 1a (ASIC1a) are present in the postsynaptic membrane of the central nervous system (CNS) and participate in physiological and pathological processes. However, the specific role played by ASIC1a in these processes remains elusive. We hypothesize that NMDARs are the primary mediators of normal synaptic transmission and excitatory neuronal death, while ASIC1a plays a modulatory role in facilitating NMDAR function. Using various experimental approaches including patch-clamp recordings on hippocampal slices and CHO cells, primary cultures of hippocampal neurons, calcium imaging, Western blot, cDNA transfection studies, and transient middle cerebral artery occlusion (tMCAO) mouse models, we demonstrate that stimulation of ASIC1a facilitates NMDAR function and inhibition of ASIC1a suppresses NMDAR over-activation. One of our key findings is that activation of ASIC1a selectively facilitates the NR1/NR2A/NR2B triheteromeric subtype of NMDAR currents. In accordance, inhibition of ASIC1a profoundly reduced the NMDAR-mediated EPSCs in older mouse brains, which are known to express much higher levels of triheteromeric NMDARs than younger brains. Furthermore, brain infarct sizes were reduced by a greater degree in older mice compared to younger ones when ASIC1a activity was suppressed. These data suggest that ASIC1a activity selectively enhances the function of triheteromeric NMDARs and exacerbates ischemic neuronal death especially in older animal brains. We propose ASIC1a as a novel therapeutic target for preventing and reducing the detrimental effect of brain ischemia in humans.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/administração & dosagem , Canais Iônicos Sensíveis a Ácido/fisiologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Proteínas do Tecido Nervoso/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/agonistas , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/agonistas
16.
J Neurochem ; 105(6): 2454-65, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18331477

RESUMO

Post-synaptic actions of glycine are terminated by specialized transporters. There are two genes encoding glycine transporters, GlyT1 and GlyT2. Glycine acts as a co-agonist at N-methyl-d-aspartate glutamatergic receptors (NMDARs). Blockage of GlyT1 enhances NMDAR function by controlling ambient glycine concentrations. Using whole-cell patch-clamp recordings of acute hippocampal slices, we investigated NMDAR kinetics of CA1 pyramidal neurons of mice expressing 50% of GlyT1 (GlyT1+/-). In this study, we report that the glycine modulatory site of the NMDAR at CA1 synapses is saturated in GlyT1+/- but not in wild-type (WT) mice. We also found that the effect of ifenprodil, a highly selective NR2B-containing-NMDAR antagonist, is significantly reduced at CA1 synapses in GlyT1+/- compared to WT mice while immunoblotting experiments do not show significant differences for NR1, NR2A-B-C-D subunits in both types of mice, suggesting alteration in NR2B-containing-NMDAR localization under a state of chronic saturating level of endogenous glycine. Using a pharmacological approach with MK-801 and DL-TBOA, we discriminated synaptic vis-à-vis extra-synaptic NMDARs. We found that NR2B-containing-NMDARs are expressed at a higher level in the extra-synaptic area of CA1 pyramidal neurons from GlyT1+/- compared to WT mice. Our results demonstrate that chronic saturating level of glycine induces significant changes in NMDAR localization and kinetic. Therefore, results from our study should help to gain a better understanding of the role of glycine in pathological conditions.


Assuntos
Região CA1 Hipocampal/metabolismo , Glicina/administração & dosagem , Glicina/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Pareamento Cromossômico/efeitos dos fármacos , Pareamento Cromossômico/fisiologia , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
18.
PLoS One ; 13(8): e0201670, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067831

RESUMO

Tea plant (Camellia sinensis (L) O. Kuntze) respond to herbivore attack through large changes in defense related metabolism and gene expression. Ectropis oblique (Prout) is one of the most devastating insects that feed on tea leaves and tender buds, which can cause severe production loss and deteriorate the quality of tea. To elucidate the biochemicals and molecular mechanism of defense against tea geometrid (TG), transcriptome and metabolome of TG interaction with susceptible (SG) and resistance (RG) tea genotypes were analyzed by using UPLC-Q-TOF-MS, GC-MS, and RNA-seq technologies. This revealed that jasmonic acid was highly induced in RG, following a plethora of secondary metabolites involved in defense against TG could be induced by jasmonic acid signaling pathway. However, the constitutively present of salicylic acid in SG might be a suppressor of jasmonate signaling and thus misdirect tea plants against TG. Furthermore, flavonoids and terpenoids biosynthesis pathways were highly activated in RG to constitute the chemical barrier on TG feeding behavior. In contrast, fructose and theanine, which can act as feeding stimulants were observed to highly accumulate in SG. Being present in the major hub, 39 transcription factors or protein kinases among putative candidates were identified as master regulators from protein-protein interaction network analysis. Together, the current study provides a comprehensive gene expression and metabolite profiles, which can shed new insights into the molecular mechanism of tea defense against TG. The candidate genes and specific metabolites identified in the present study can serve as a valuable resource for unraveling the possible defense mechanism of plants against various biotic stresses.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Metabolômica/métodos , Vias Biossintéticas , Ciclopentanos/análise , Resistência à Doença , Flavonoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Regulação Neoplásica da Expressão Gênica , Oxilipinas/análise , Proteínas de Plantas/genética , Ácido Salicílico/análise , Análise de Sequência de RNA , Terpenos/análise
19.
J Agric Food Chem ; 66(40): 10470-10478, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253089

RESUMO

Catechins are important chemical components determining the quality of tea. The catechin index (CI, ratio of dihydroxylated catechin (DIC)/trihydroxylated catechin (TRIC)) in the green leaf has a major influence on the amounts of theaflavins in black tea. In this work, the major catechin profiles of wild tea plants originating from Guizhou Province with high CI trait were investigated. We identified a novel flavonoid 3',5' hydroxylase gene ( F3' 5' H) allele with a 14 bp deletion in the upstream regulation region and developed an insertion/deletion (InDel) marker accordingly. The 14 bp deletion in the novel  F3' 5' H allele was associated with low F3' 5' H mRNA expression, thereby resulting in low TRIC content and high CI value. The allelic variant in the novel F3' 5' H allele associated with high CI values and DIC contents was confirmed by the introgression lines derived from a distant cross population. The novel F3' 5' H allele in wild tea plants is a valuable gene resource, which could be applied to breeding improvement on tea quality.


Assuntos
Camellia sinensis/genética , Catequina/análise , Oxigenases de Função Mista/genética , Alelos , Camellia sinensis/química , Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/metabolismo , Melhoramento Vegetal , Controle de Qualidade , Deleção de Sequência , Chá/química
20.
J Agric Food Chem ; 66(50): 13321-13327, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30486648

RESUMO

Understanding the genetic basis of theobromine and caffeine accumulation in the tea plant is important due to their contribution to tea flavor. Quantitative trait loci (QTL) analyses were carried out to identify genetic variants associated with theobromine and caffeine contents and ratio using a pseudo-testcross population derived from an intervarietal cross between two varieties of Camellia sinensis. A total of 10 QTL controlling caffeine content (CAF), theobromine content (TBR), sum of caffeine and theobromine (SCT), and caffeine-to-theobromine ratio (CTR) were identified over four measurement years. The major QTL controlling CAF, qCAF1, was mapped onto LG01 and validated across years, explaining an average of 20.1% of the phenotypic variance. The other QTL were detected in 1 or 2 years, and of them there were four, two, and three for TBR, SCT, and CTR, respectively. The present results provide valuable information for further fine mapping and cloning functional genes and for genetic improvement in tea plant.


Assuntos
Cafeína/metabolismo , Camellia sinensis/genética , Locos de Características Quantitativas , Teobromina/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Mapeamento Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA