RESUMO
Non-small cell lung cancer (NSCLC) patients infected with COVID-19 experience much worse prognosis. However, the specific mechanisms behind this phenomenon remain unclear. We conducted a multicentre study, collecting surgical tissue samples from a total of 36 NSCLC patients across three centres to analyse. Among the 36 lung cancer patients, 9 were infected with COVID-19. COVID-19 infection (HR = 21.62 [1.58, 296.06], p = 0.021) was an independent risk factor of progression-free survival (PFS). Analysis of RNA-seq data of these cancer tissues demonstrated significantly higher expression levels of cuproptosis-associated genes in COVID-19-infected lung cancer patients. Using Lasso regression and Cox regression analysis, we identified 12 long noncoding RNAs (lncRNA) regulating cuproptosis. A score based on these lncRNA were used to divide patients into high-risk and low-risk groups. The results showed that the high-risk group had lower overall survival and PFS compared to the low-risk group. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) database revealed that the high-risk group benefited more from immunotherapy. Drug sensitivity analysis identified cetuximab and gefitinib as potentially effective treatments for the high-risk group. Cuproptosis plays a significant role NSCLC patients infected with COVID-19. Promisingly, cetuximab and gefitinib have shown potential effectiveness for managing these patients.
Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , SARS-CoV-2 , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/virologia , COVID-19/genética , COVID-19/complicações , COVID-19/virologia , RNA Longo não Codificante/genética , Masculino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/complicações , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , SARS-CoV-2/genética , Regulação Neoplásica da Expressão GênicaRESUMO
RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRTâPCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.
Assuntos
Crassostrea , Necroptose , Filogenia , Transdução de Sinais , Animais , Crassostrea/genética , Crassostrea/imunologia , Necroptose/imunologia , Transdução de Sinais/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Aminoácidos , Imunidade Inata/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Staphylococcus aureus/fisiologia , Dinoflagellida/fisiologia , Dinoflagellida/genéticaRESUMO
In this work we develop a new scheme to construct a diabatic potential energy matrix (DPEM). We propose a diabatization method which is based on integrating the diabatic potential gradient difference to diabatize adiabatic ab initio energies. This method is capable of performing high-precision adiabatic-to-diabatic transformations, with a unique advantage in effectively handling the significant fluctuations in derivative-couplings caused by conical intersection (CI) seams. The above scheme is applied to the DPEM construction of the Na(3p) + H2 â NaH + H reaction. The fitting data including adiabatic energies, energy gradients and derivative-couplings obtained from a previous benchmark DPEM are diabatized and fitted using a general neural network fitting procedure to generate the DPEM. The produced DPEM can effectively describe nonadiabatic processes involving different electronic states. We further perform quantum dynamical calculations on the new DPEM and the previous benchmark DPEM, and the obtained results demonstrate the effectiveness of our scheme.
RESUMO
Molecular vibrational frequency analysis plays an important role in theoretical and computational chemistry. However, in many cases, the analytical frequencies are unavailable, whereas frequency calculations using conventional numerical methods are very expensive. In this work, we propose an efficient method to numerically calculate the frequencies. Our main strategies are to exploit the sparseness of the Hessian matrix and to construct the N-fold two-variable potential energy surfaces to fit the parabola parameters, which are later used for the construction of Hessian matrices. A set of benchmark calculations is performed for typical molecules of different sizes and complexities using the proposed method. The obtained frequencies are compared to those calculated with the analytical methods and conventional numerical methods. It is shown that the results yielded with the new method are in very good agreement with corresponding accurate values (with a maximum error of â¼20 cm-1), while the required computation resource is largely reduced compared to that required by conventional numerical methods. For medium-sized molecules, the calculational scaling is lowered to O(N1.6) (this work) from that of O(N2) (conventional numerical methods). For even larger molecules, more computational savings can be achieved, and the scaling is estimated to be quasilinear with respect to the molecular size.
RESUMO
Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, 15N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g-1 h-1) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g-1 h-1) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA >3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.
Assuntos
Sedimentos Geológicos , Nitrogênio , Rios , Curtume , Águas Residuárias , Rios/microbiologia , Rios/química , Águas Residuárias/microbiologia , Águas Residuárias/química , Águas Residuárias/análise , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , Bactérias , Desnitrificação , Óxido Nitroso/análiseRESUMO
Esophagus cancer (EC) is one of the most aggressive malignant digestive system tumors and has a high clinical incidence worldwide. Magnolol, a natural compound, has anticancer effects on many cancers, including esophageal carcinoma, but the underlying mechanism has not been fully elucidated. Here, we first find that magnolol inhibits the proliferation of esophageal carcinoma cells and enhances their autophagy activity in a dose- and time-dependent manner. This study demonstrates that magnolol increases the protein levels of LC3 II, accompanied by increased HACE1 protein levels in both esophageal carcinoma cells and xenograft tumors. HACE1-knockout (KO) cell lines are generated, and the ablation of HACE1 eliminates the anti-proliferative and autophagy-inducing effects of magnolol on esophageal carcinoma cells. Additionally, our results show that magnolol primarily promotes HACE1 expression at the transcriptional level. Therefore, this study shows that magnolol primarily exerts its antitumor effect by activating HACE1-OPTN axis-mediated autophagy. It can be considered a promising therapeutic drug for esophageal carcinoma.
Assuntos
Autofagia , Compostos de Bifenilo , Proliferação de Células , Neoplasias Esofágicas , Lignanas , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Autofagia/efeitos dos fármacos , Autofagia/genética , Lignanas/farmacologia , Humanos , Linhagem Celular Tumoral , Compostos de Bifenilo/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds which are comprised of two or more fused benzene rings. As a typical environmental pollutant, PAHs are widely distributed in water, soil, atmosphere and food. Despite extensive researches on the mechanisms of health damage caused by PAHs, especially their carcinogenic and mutagenic toxicity, there is still a lack of comprehensive summarization and synthesis regarding the mechanisms of PAHs on the gut-testis axis, which represents an intricate interplay between the gastrointestinal and reproductive systems. Thus, this review primarily focuses on the potential forms of interaction between PAHs and the gut microbiota and summarizes their adverse outcomes that may lead to gut microbiota dysbiosis, then compiles the possible mechanistic pathways on dysbiosis of the gut microbiota impairing the male reproductive function, in order to provide valuable insights for future research and guide further exploration into the intricate mechanisms underlying the impact of gut microbiota dysbiosis caused by PAHs on male reproductive function.
Assuntos
Disbiose , Poluentes Ambientais , Microbioma Gastrointestinal , Hidrocarbonetos Policíclicos Aromáticos , Testículo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Testículo/efeitos dos fármacos , Humanos , Animais , Poluentes Ambientais/toxicidade , Disbiose/induzido quimicamente , Reprodução/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacosRESUMO
Importance: Adjuvant and neoadjuvant immunotherapy have improved clinical outcomes for patients with early-stage non-small cell lung cancer (NSCLC). However, the optimal combination of checkpoint inhibition with chemotherapy remains unknown. Objective: To determine whether toripalimab in combination with platinum-based chemotherapy will improve event-free survival and major pathological response in patients with stage II or III resectable NSCLC compared with chemotherapy alone. Design, Setting, and Participants: This randomized clinical trial enrolled patients with stage II or III resectable NSCLC (without EGFR or ALK alterations for nonsquamous NSCLC) from March 12, 2020, to June 19, 2023, at 50 participating hospitals in China. The data cutoff date for this interim analysis was November 30, 2022. Interventions: Patients were randomized in a 1:1 ratio to receive 240 mg of toripalimab or placebo once every 3 weeks combined with platinum-based chemotherapy for 3 cycles before surgery and 1 cycle after surgery, followed by toripalimab only (240 mg) or placebo once every 3 weeks for up to 13 cycles. Main Outcomes and Measures: The primary outcomes were event-free survival (assessed by the investigators) and the major pathological response rate (assessed by blinded, independent pathological review). The secondary outcomes included the pathological complete response rate (assessed by blinded, independent pathological review) and adverse events. Results: Of the 501 patients randomized, 404 had stage III NSCLC (202 in the toripalimab + chemotherapy group and 202 in the placebo + chemotherapy group) and 97 had stage II NSCLC and were excluded from this interim analysis. The median age was 62 years (IQR, 56-65 years), 92% of patients were male, and the median follow-up was 18.3 months (IQR, 12.7-22.5 months). For the primary outcome of event-free survival, the median length was not estimable (95% CI, 24.4 months-not estimable) in the toripalimab group compared with 15.1 months (95% CI, 10.6-21.9 months) in the placebo group (hazard ratio, 0.40 [95% CI, 0.28-0.57], P < .001). The major pathological response rate (another primary outcome) was 48.5% (95% CI, 41.4%-55.6%) in the toripalimab group compared with 8.4% (95% CI, 5.0%-13.1%) in the placebo group (between-group difference, 40.2% [95% CI, 32.2%-48.1%], P < .001). The pathological complete response rate (secondary outcome) was 24.8% (95% CI, 19.0%-31.3%) in the toripalimab group compared with 1.0% (95% CI, 0.1%-3.5%) in the placebo group (between-group difference, 23.7% [95% CI, 17.6%-29.8%]). The incidence of immune-related adverse events occurred more frequently in the toripalimab group. No unexpected treatment-related toxic effects were identified. The incidence of grade 3 or higher adverse events, fatal adverse events, and adverse events leading to discontinuation of treatment were comparable between the groups. Conclusions and Relevance: The addition of toripalimab to perioperative chemotherapy led to a significant improvement in event-free survival for patients with resectable stage III NSCLC and this treatment strategy had a manageable safety profile. Trial Registration: ClinicalTrials.gov Identifier: NCT04158440.
Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos de Platina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Resposta Patológica Completa , Antineoplásicos/uso terapêutico , Terapia Combinada , Compostos de Platina/administração & dosagem , Compostos de Platina/uso terapêutico , IdosoRESUMO
The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.
Assuntos
Bivalves , Espermatogênese , Testículo , Fatores de Transcrição , Animais , Espermatogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Bivalves/genética , Bivalves/metabolismo , Bivalves/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Clonagem Molecular , Filogenia , Sequência de AminoácidosRESUMO
OBJECTIVE: Lung adenocarcinoma (LUAD) is one of the frequent subtypes of lung cancer, featuring high rates of incidence and mortality. Matrix metalloproteinase 14 (MMP14) is known as a regulator in multiple cancers, whereas its upstream molecular mechanism remains to be investigated. This study aims to reveal the upstream molecular mechanism of MMP14 in LUSC progression. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were conducted to examine the levels of MMP14 mRNA and protein in LUAD cells, respectively. Cell counting kit-8 (CCK-8), transwell assay and wound healing assay were implemented to unveil LUAD cell proliferation, migration and invasion after indicated transfections. Flow cytometry analysis was applied to evaluate macrophage polarization. Mechanism experiments such as western blot, co-immunoprecipitation (Co-IP), RNA pulldown assay, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to explore relevant molecular mechanisms. RESULTS: MMP14 facilitated LUAD cell proliferation, invasion and migration. MMP14 is the target gene of miR-1287-5p. Circ-ADRM1 upregulates MMP14 expression through sponging miR-1287-5p. Circ-ADRM1 recruits USP12 to impede the ubiquitination of MMP14 protein, thereby enhancing the stability of MMP14 protein. LUAD-derived exosomes induced macrophage M2 polarization by delivering circ-ADRM1. CONCLUSIONS: Circ-ADRM1 promotes LUAD cell proliferation, invasion and migration through upregulating MMP14. Additionally, circ-ADRM1 induces macrophage M2 polarization in an exosome-dependent manner.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Metaloproteinase 14 da Matriz , RNA Mensageiro , Fatores de Transcrição , Proliferação de Células , Macrófagos , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Long non-coding RNAs (lncRNAs) play central roles in lung cancer progression by acting as competing endogenous RNAs (ceRNAs). This study aimed to explore the roles of lncRNA SDCBP2-AS1 in lung cancer and the molecular mechanism. The expression of SDCBP2-AS1, microRNA (miR)-656-3p, and cysteine-rich transmembrane BMP regulator 1 (CRIM1) was measured using quantitative real-time polymerase chain reaction. Ferroptosis was evaluated by analyzing cell death, ferrous content, reactive oxygen species (ROS) level, and protein levels of ferroptosis markers. The binding relationship was assessed using a dual-luciferase reporter assay. We observed that SDCBP2-AS1 was highly expressed in lung cancer cells. Knockdown of SDCBP2-AS1 promoted ferroptosis of lung cancer cells. SDCBP2-AS1 is a sponge of miR-656-3p, which directly targets CRIM1. Rescue experiments confirmed that SDCBP2-AS1 regulates ferroptosis by miR-656-3p, and overexpression of CRIM1 abrogated the effects of miR-656-3p on ferroptosis. In conclusion, depletion of SDCBP2-AS1 promoted lung cancer cell ferroptosis via the miR-656-3p/CRIM1 axis.
Assuntos
Ferroptose , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Lung adenocarcinoma (LUAD) is the primary cause of death among pulmonary cancer patients. Upregulation of CD80 may interact with cytotoxic T lymphocyte antigen 4 (CTLA4) to promote tumor progression and provide a potential target for biological antitumor therapy. However, the role of CD80 in LUAD is still unclear. To investigate the function of CD80 in LUAD, we collected transcriptomic data from 594 lung samples from The Cancer Genome Atlas of America (TCGA) database, along with the corresponding clinical information. We systematically explored the role of CD80 in LUAD using bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, Gene Set Enrichment Analysis (GSEA), co-expression analysis, and the CIBERSORT algorithm. Finally, we investigated the differences between the two subgroups of CD80 expression in terms of some drug sensitivity, using the pRRophetic package to screen small molecular drugs for therapeutic use. A predictive model based on CD80 for LUAD patients was successfully constructed. In addition, we discovered that the CD80-based prediction model was an independent prognostic factor. Co-expression analysis revealed 10 CD80-related genes, including oncogenes and immune-related genes. Functional analysis showed that the differentially expressed genes in patients with high CD80 expression were mainly located in immune-related signaling pathways. CD80 expression was also associated with immune cell infiltration and immune checkpoints. Highly expressing patients were more sensitive to several drugs, such as rapamycin, paclitaxel, crizotinib, and bortezomib. Finally, we found evidence that 15 different small molecular drugs may benefit the treatment of LUAD patients. This study found that elevated CD80 pairs could improve the prognosis of LUAD patients. CD80 is likely to be a potential as a prognostic and therapeutic target. The future use of small molecular drugs in combination with immune checkpoint blockade to enhance antitumor therapy and improve prognosis for LUAD patients is promising.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Biomarcadores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , ImunoterapiaRESUMO
The Belt and Road Initiative (BRI), which was first put forward by China in late 2013, has made a significant contribution to international economic activities and inevitably reshaped the pattern of carbon dioxide (CO2) emissions. Considering the spatial spillover effects of CO2 emissions among countries, this paper employs spatial difference-in-differences models in order to investigate the BRI's effects on total CO2 emissions (TCE), per capita CO2 emissions (PCE), and CO2 emissions intensity (CEI), respectively. The results of global Moran's I index prove the existence of spatial correlations of CO2 emissions. The BRI's effect on TCE is significantly positive, while the effects on PCE and CEI are significantly negative, suggesting the BRI has aggravated the amount of CO2 emissions in the partner countries, but has promoted green development by decreasing PCE and CEI. Besides, the spatial effects of control variables on CO2 emissions are also evaluated. Some tests, including placebo test and employing alternative weight matrices, are further conducted to verify the robustness of the model. The findings indicate the BRI has facilitated green economic growth, by eventually achieving emission reduction targets in the partner countries.
Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Dióxido de Carbono/análise , ChinaRESUMO
Coherence-assisted transformation under incoherent operations is discussed. For transformation from the pure state to the mixed state, we show that the coherence loss can be partially recovered by adding auxiliary coherent states. First, we discuss the coherence-assisted transformation for qubit states and give the sufficient and necessary condition for the partial recovery of coherence loss, and the maximum of the recovery of coherence loss is also studied in this case. Second, the maximally coherent state can be obtained in the above recovery scheme, so we give the full characterization of obtaining the maximally coherent state in a qubit system. Finally, we show that the coherence-assisted transformation for arbitrary finite-dimensional main coherent states and low-dimensional auxiliary coherent states is always possible, and the coherence loss also can be partially recovered in these cases.
RESUMO
There is evidence suggesting the participation of non-coding RNAs in male reproductive dysfunction induced by lead, and the significance of microRNAs has been highlighted recently because of their essential roles in gene regulatory networks. To comprehensively understand the functions of miRNA and the regulatory networks, RNA sequencing was carried out to obtain miRNA expression profiles in mice testes exposed to low dose Pb for 90 days at the onset of puberty. In total, 44 differentially expressed miRNAs with 26 up-regulated and 18 down-regulated were identified between 200 mg/L Pb group and control group (p < 0.05). Enrichment analysis confirmed that the target genes of DE miRNAs might participate in the metabolism of testicular cells. Furthermore, a miRNA-mRNA co-expression network consisting of 19 miRNAs and 106 mRNAs and a competing endogenous RNA network of lncRNA-miRNA-mRNA including 179 genes were established. Finally, the expressions of 4 miRNAs (mmu-miR-451a, mmu-miR-133a-3p, mmu-miR-1a-3p and mmu-miR-486a-3p) and 4 mRNAs (Gramd1b, Tcf7l2, Mov10 and Srcin1) involved in regulatory networks were verified by RT-qPCR. In conclusion, our research might provide targets for the mechanism studies of miRNAs in reproductive toxicity of Pb.
Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Redes Reguladoras de Genes , Chumbo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Maturidade Sexual , Testículo/metabolismoRESUMO
Organic resin cross-linking ZIF-67/SiO2 superhydrophobic (SHPB) multilayer coating was successfully fabricated on metal substrate. The perfluoro-octyl-triethoxy silane (POTS) modified ZIF-67 and SiO2 coating was applied on primary coated polytetrafluoroethylene (PTFE) and epoxy resin (EP) via spray coating method. Here, we present that the robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellence and a microstructure design to provide durability. The as-fabricated multilayer coating displayed superior water-repellence (CA=167.4°), chemical robustness (pH=1-14) and mechanical durability undergoing 120th linear abrasion or 35th rotatory abrasion cycle. By applying different acidic and basic corrosive media and various weathering conditions, it can still maintain superior-hydrophobicity. To get a better insight of interaction between inhibitor molecules and metal surface, density functional theory (DFT) calculations were performed, showing lower energy gap and increased binding energy of ZPS/SiO2 /PTFE/EP (ZPS=ZIF-67+POTS) multilayer coating compared to the ZIF-67/SiO2 /PTFE/EP, thereby supporting the experimental findings. Additionally, such coatings may be useful for applications such as anti-corrosion, self-cleaning, and anti-icing multi-functionalities.
RESUMO
In this study, electrodeposition combined with anodization was employed to prepare a nanoporous tin oxide film on a pure copper substrate. It was found that annealing temperature played a critically significant role in regulating the crystallinity, pore size, and contents of different oxidation states of the anodized tin oxide film to affect the electrochemical performance. The study verified that SnOx films treated by optimized annealing at 500 °C with precisely controlling the nanoporous morphology and crystallinity displayed competitive specific capacitance at an appropriate ratio of Sn4+ to Sn2+. A maximum specific capacitance of 86.2 mF/cm2 could be achieved at this temperature, and the capacitance retention rate still exceeded 90% even after 8000 charge-discharge cycles. With properly designed annealing treatment, we implemented tin film anodization to obtain an optimized electrode with significantly enhanced electrochemical performance, which shows a promising application in the electrochemical field to prepare electrodes.
RESUMO
In this paper, we have proposed a novel strategy to combine electrochemical anodization and electropolymerization for the in situ preparation of metal oxide/conductive polymer hybrid electrodes in supercapacitors. The feasibility of such a strategy was further verified by applying it to the iron oxide/polyaniline (Fe3O4/PANI) hybrid electrode material system.
RESUMO
Serum amyloid protein (SAA) is known as an acute reactive protein of innate immunity in mammals. However, in invertebrates, the role of SAA in innate immunity is still unclear. In this study, a full-length cDNA of the SAA gene (named TcSAA) was cloned from Tridacna crocea, mollusca. The gene includes a 193 bp 5' untranslated region (UTR) and a 129 bp 3' UTR sequence, and the open reading frame (ORF) with 393 bp nucleotides encodes a polypeptide of 130 amino acids. TcSAA contains a typical signal peptide and an SAA functional domain. The mRNA expression of TcSAA was detected in all 12 selected tissues and 7 different developmental stages. Furthermore, the expression of TcSAA was increased quickly in hemocytes after challenge with V. coralliilyticus or LPS. Furthermore, rTcSAA could bind V. coralliilyticus and V. alginolyticus, and the protein could reduce the lethality rate of the clams from 80% to 55% which caused by V. coralliilyticus about 48 h after injection. In summary, these results indicate that TcSAA may act as a marker for monitoring health and protecting T. crocea.
Assuntos
Perciformes , Sequência de Aminoácidos , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , Mamíferos/genética , Mamíferos/metabolismo , FilogeniaRESUMO
BACKGROUND AND AIM: Intestinal homeostasis is closely associated with the normal intestinal luminal physiological environment. Temporary loop ileostomy changes the intestinal structure and diverts the fecal stream, thereby disturbing the intestinal environment. This study aimed to clarify the changing situation of the human intestinal mucosa barrier in the absence of a fecal stream after loop ileostomy. METHODS: We obtained paired samples from the fed (fecal stream maintained) and unfed (no fecal stream) portions of the loop ileostomy and subjected these samples to RNA sequencing. We also determined transepithelial electrical resistance. The mucus layer thickness and content of MUC2, tight junction proteins, and common antimicrobial peptides in ileum mucosa were studied. RESULTS: Transcriptome data revealed that genes associated with enhancing the intestinal barrier function of the unfed ileum were significantly decreased and genes associated with immune defense response were significantly increased. The transepithelial electrical resistance was lower and the mucus layer thickness was thinner in the unfed ileal mucosa than in the fed ileum. The MUC2, Occludin, and zonula occludens 1 content was lower in the unfed ileum than in the fed ileum. α-Defensin 5, α-defensin 6, and lysozyme content was higher in the unfed ileum than in the enterally fed ileum. CONCLUSION: Intestinal barrier function is weakened after long-term fecal diversion, but antimicrobiota defense function is strengthened. Thus, the intestinal mucosa barrier adopts an alternative stable state during fecal diversion, which may explain the clinical paucity of cases of enterogenic infection caused by loop ileostomy.