Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Biotechnol Equip ; 29(1): 10-14, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019613

RESUMO

In order to study the survival mechanisms to drought stress for fruit body of Auricularia auricula, soluble carbohydrates and respiratory enzymes were investigated. Fruit bodies were exposed to sunlight and were naturally dehydrated. Samples were taken at different levels of water loss (0%, 10%, 30%, 50% and 70%) to measure the content of soluble sugars and polysaccharides. The activities of phosphoglucose isomerase (PGI), combined glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), and malate dehydrogenase (MDH), were also determined. The results showed that with the increase in water loss, soluble sugars and MDH activity declined, whereas the activities of G-6-PDH and 6-PGDH increased. Soluble polysaccharides content and PGI activity decreased with water loss up to 30% and increased afterwards. These results suggested that the pentose phosphate pathway (PPP), as demonstrated by activities of G-6-PDH and 6-PGDH, could be one of the mechanisms for survival during drought stress in the fruit body of A. auricula. Moreover, soluble polysaccharides may play a part in protecting the fruit body in further drought stress.

2.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523449

RESUMO

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Assuntos
Antioxidantes , Auricularia , Basidiomycota , Antioxidantes/metabolismo , Umidade , Frutas/metabolismo , Catalase/metabolismo , Ácido Ascórbico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Basidiomycota/metabolismo , Peroxidação de Lipídeos
3.
Bing Du Xue Bao ; 25(2): 117-24, 2009 Mar.
Artigo em Zh | MEDLINE | ID: mdl-19678566

RESUMO

Twenty Newcastle disease virus (NDV) strains were isolated from chickens and geese in the field outbreaks during 2005 and 2006 in some regions of Jiangsu and Guangxi province. Assessment of the virulence by MDT and ICPI, RT-PCR and sequence analysis of fusion protein gene were used to compare the properties of NDV isolates. The results indicated that MDT and ICPI of the isolates were 45.3h - 58.2h and 1.61 - 2.00 respectively, which confirmed that the all NDV isolates were highly virulent. And their hemagglutinin were not resistant to heat and belonged to fast pattern of elution. The results of nucleotide sequencing and phylogentic analysis of fusion protein gene showed that the twenty strains shared homology from 79.7% to 100% among themselves, from 78.1% to 83.4% and from 80.2% to 90.1% with NDV LaSota, F48E8, respectively. The putative amino acid sequences of fusion protein at the cleavage sites of all the isolates were 112R-R-Q-R/K-R-F117, with the motif characteristics of the virulent NDV strain, which was in accordant with the results of assessment of the pathogenicity. The phylogentic tree based on sequences of fusion protein gene variable regions (47-420nt) revealed that the 18 strains belonged to sub-genotype VIId and the others belonged to an old genotype III of NDV, revealing that subgenotype VIId virus was responsible for the NDV outbreaks in some regions of Jiangsu and Guangxi promince recently.


Assuntos
Surtos de Doenças , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas/virologia , China/epidemiologia , Gansos/virologia , Epidemiologia Molecular , Doença de Newcastle/epidemiologia , Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA