Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Emerg Infect Dis ; 26(8): 1906-1911, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687047

RESUMO

After a sharp decrease of influenza A(H7N9) virus in China in 2018, highly pathogenic H7N9 viruses re-emerged in 2019. These H7N9 variants exhibited a new predominant subclade and had been cocirculating at a low level in eastern and northeastern China. Several immune escape mutations and antigenic drift were observed in H7N9 variants.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/epidemiologia
2.
Virology ; 597: 110121, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917688

RESUMO

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.

3.
Vet Microbiol ; 293: 110099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677125

RESUMO

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.


Assuntos
Sistemas CRISPR-Cas , Vírus da Encefalite Japonesa (Espécie) , RNA Guia de Sistemas CRISPR-Cas , Replicação Viral , Replicação Viral/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Animais , Interações Hospedeiro-Patógeno/genética , Encefalite Japonesa/virologia , Linhagem Celular , Células HEK293 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
4.
Viruses ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36992348

RESUMO

The constantly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) fuel the worldwide coronavirus disease (COVID-19) pandemic. The spike protein is essential for the SARS-CoV-2 viral entry and thus has been extensively targeted by therapeutic antibodies. However, mutations along the spike in SARS-CoV-2 VOC and Omicron subvariants have caused more rapid spread and strong antigenic drifts, rendering most of the current antibodies ineffective. Hence, understanding and targeting the molecular mechanism of spike activation is of great interest in curbing the spread and development of new therapeutic approaches. In this review, we summarize the conserved features of spike-mediated viral entry in various SARS-CoV-2 VOC and highlight the converging proteolytic processes involved in priming and activating the spike. We also summarize the roles of innate immune factors in preventing spike-driven membrane fusion and provide outlines for the identification of novel therapeutics against coronavirus infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Imunidade Inata , Glicoproteína da Espícula de Coronavírus
5.
Vet Microbiol ; 285: 109852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683421

RESUMO

Since mid-2016, the highly pathogenic H7N9 subtype avian influenza virus (AIV) has threatened both public health and the poultry industry. Although a vaccination strategy has been deemed imperative to manage the virus, the most commonly used inactivated vaccines today are susceptible to interference from maternal antibodies and associated with an over-reliance on humoral immunity. In response, we developed a recombination vaccine with the herpesvirus of turkeys (HVT) as the vector to squeeze HPAI H7N9 and assessed its protective efficiency in immunized chickens. By inserting an enhanced green fluorescent protein (EGFP) expression cassette (i.e., MCMV+EGFP+SV40 polyA) into the HVT065 and HVT066 positions, we obtained the recombinant HVT expressing EGFP (i.e., rHVT-EGFP). Electroporation and EGFP tags improved the efficiency of transfection compared with transfection using expression plasmids without any fluorescent labeling and traditional liposomes. Using limiting dilution analysis and ultrasonic cell disruption techniques, we screened and purified a cell-bound herpes virus based on rHVT-EGFP and consequently constructed a recombinant HVT expressing the hemagglutinin (HA) of H7N9 (i.e., rHVT-H7HA), which was able to proliferate similarly to the parental strain, stably pass for at least 15 generations in vitro, and replicate stably in multiple organs in vivo. After chickens were immunized with rHVT-H7HA, the average antibody titers reached up to 3 log2 at 35 d post-vaccination and remained stable. Those results suggest that rHVT-H7HA can protect chickens against H7N9 with a dose-independent immune protection rate of 90% and significantly reduce the lung virus titer 4 d post-challenge.

6.
Front Vet Sci ; 9: 849178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280146

RESUMO

H9N2 avian influenza viruses (AIVs) continuously cross the species barrier to infect mammalians and are repeatedly transmitted to humans, posing a significant threat to public health. Importantly, some H9N2 AIVs were found to cause lethal infection in mice, but little is known about the viral infection dynamics in vivo. To analyze the real-time infection dynamics, we described the generation of a mouse-lethal recombinant H9N2 AIV, an influenza reporter virus (VK627-NanoLuc virus) carrying a NanoLuc gene in the non-structural (NS) segment, which was available for in vivo imaging. Although attenuated for replication in MDCK cells, VK627-NanoLuc virus showed similar pathogenicity and replicative capacity in mice to its parental virus. Bioluminescent imaging of the VK627-NanoLuc virus permitted successive observations of viral infection and replication in infected mice, even following the viral clearance of a sublethal infection. Moreover, VK627-NanoLuc virus was severely restricted by the K627E mutation in PB2, as infected mice showed little weight loss and a low level of bioluminescence. In summary, we have preliminarily established a visualized tool that enables real-time observation of the infection and replication dynamics of H9N2 AIV in mice, which contributes to further understanding the mechanisms underlying the pathogenic enhancement of H9N2 AIV to mice.

7.
iScience ; 25(12): 105693, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36567717

RESUMO

Avian influenza H5N6 virus not only wreaks economic havoc in the poultry industry but also threatens human health. Strikingly, as of August 2022, 78 human beings were infected with H5N6, and the spike in the number of human infections with H5N6 occurred during 2021. In the life cycle of influenza virus, neuraminidase (NA) has numerous functions, especially viral budding and replication. Here, we found that NA-D272N mutation became predominant in H5N6 viruses since 2015 and significantly increased the viral replication and virulence in mice. D272N mutation in NA protein increased viral release from erythrocytes, thermostability, early transcription, and accumulation of NA protein. Particularly, the dominant 272 residue switch from N to S has occurred in wild bird-origin H5N6 viruses since late 2016 and N272S mutation induced significantly higher levels of inflammatory cytokines in infected human cells. Therefore, comprehensive surveillance of bird populations needs to be enhanced to monitor mammalian adaptive mutations of H5N6 viruses.

8.
Commun Biol ; 4(1): 71, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452423

RESUMO

Low pathogenic avian influenza A(H9N2) virus is endemic worldwide and continually recruit internal genes to generate human-infecting H5N1, H5N6, H7N9, and H10N8 influenza variants. Here we show that hemagglutinin cleavage sites (HACS) of H9N2 viruses tended to mutate towards hydrophilic via evolutionary transition, and the tribasic HACS were found at high prevalence in Asia and the Middle East. Our finding suggested that the tribasic H9N2 viruses increased the viral replication, stability, pathogenicity and transmission in chickens and the virulence of mice compared to the monobasic H9N2 viruses. Notably, the enlarged stem-loop structures of HACS in the RNA region were found in the increasing tribasic H9N2 viruses. The enlarged HACS RNA secondary structures of H9N2 viruses did not influence the viral replication but accelerated the frequency of nucleotide insertion in HACS. With the prevailing tendency of the tribasic H9N2 viruses, the tribasic HACS in H9N2 viruses should be paid more attention.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H9N2/genética , Animais , Galinhas , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H9N2/patogenicidade , Camundongos , Mutação , Filogeografia , Replicação Viral
9.
Virus Evol ; 6(2): veaa079, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33324491

RESUMO

From 2013 onwards, the spread of novel H5N6 highly pathogenic avian influenza (HPAI) viruses in China has posed great threats to not only poultry industry but also human health. Since late-2016 in particular, frequent outbreaks of clade 2.3.4.4 H5N6 HPAI viruses among wild birds have promoted viral dissemination in South Korea, Japan, and European countries. In response to those trends, we conducted molecular genetic analysis of global clade 2.3.4.4 H5N6 viruses in order to characterize spatio-temporal patterns of viral diffusion and genetic diversity among wild birds and poultry. The clade 2.3.4.4 H5N6 viruses were classified into three groups (Group B, C, and D). During the cocirculation of Group C/D H5N6 viruses from 2013 to 2017, viral movements occurred between close or adjacent regions of China, Vietnam, South Korea, and Japan. In addition, viral migration rates from Guangdong and Hunan to multiple adjacent provinces seemed to have been highly supported by transmission routes (Bayes factors >100), suggesting that southern China was an epicenter for the spread of H5N6 viruses in poultry during that period. Since the introduction of H5N6 viruses originating in wild birds in late-2016, evolving H5N6 viruses have lost most previous genotypes (e.g. G1, G2, and G1.2), whereas some prevailing genotypes (e.g. G1.1, G1.1.b, and G3) in aquatic birds have been dominated, and in particular, the effective population size of H5N6 originating in wild birds dramatically increased; however, the population size of poultry-origin H5N6 viruses declined during the same period, indicating that wild bird migration might accelerate the genetic diversity of H5N6 viruses. Phylogeographic approaches revealed that two independent paths of H5N6 viruses into South Korea and Japan from 2016 to 2018 and provided evidence of Group B and Group C H5N6 viruses were originated from Europe and China, respectively, as regions located in the East Asia-Australian migration flyway, which accelerated the genetic variability and dissemination. Altogether, our study provides insights to examine time of origin, evolutionary rate, diversification patterns, and phylogeographical approach of global clade 2.3.4.4 H5N6 HPAI viruses for assessing their evolutionary process and dissemination pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA