Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
2.
Biogerontology ; 25(3): 379-398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38109001

RESUMO

Of the factors studied in individual ageing, the accumulation of senescent cells has been considered as an essential cause of organ degeneration to eventually initiate age-related diseases. Cellular senescence is attributed to the accumulation of damage for an inducement in the activation of cell cycle inhibitory pathways, resulting the cell permanently withdraw from the cell proliferation cycle. Further, senescent cells will activate the inflammatory factor secretion pathway to promote the development of various age-related diseases. Senolytics, a small molecule compound, can delay disease development and extend mammalian lifespan. The evidence from multiple trials shows that the targeted killing of senescent cells has a significant clinical application for the treatment of age-related diseases. In addition, senolytics are also significant for the development of ageing research in solid organ transplantation, which can fully develop the potential of elderly organs and reduce the age gap between demand and supply. We conclude that the main characteristics of cellular senescence, the anti-ageing drug senolytics in the treatment of chronic diseases and organ transplantation, and the latest clinical progress of related researches in order to provide a theoretical basis for the prevention and treatment of ageing and related diseases.


Assuntos
Envelhecimento , Senescência Celular , Senoterapia , Humanos , Senescência Celular/efeitos dos fármacos , Senoterapia/farmacologia , Senoterapia/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Transplante de Órgãos
3.
Anal Chim Acta ; 1302: 342494, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580414

RESUMO

BACKGROUND: Thrombin, a coagulation system protease, is a key enzyme involved in the coagulation cascade and has been developed as a marker for coagulation disorders. However, the methods developed in recent years have the disadvantages of complex operation, long reaction time, low specificity and sensitivity. Meanwhile, thrombin is at a lower level in the pre-disease period. Therefore, to accurately diagnose the disease, it is necessary to develop a fast, simple, highly sensitive and specific method using signal amplification technology. RESULTS: We designed an electrochemical biosensor based on photocatalytic atom transfer radical polymerization (photo-ATRP) signal amplification for the detection of thrombin. Sulfhydryl substrate peptides (without carboxyl groups) are self-assembled to the gold electrode surface via Au-S bond and serve as thrombin recognition probes. The substrate peptide is cleaved in the presence of thrombin to generate -COOH, which can form a carboxylate-Zr(IV)-carboxylate complex via Zr(IV) and initiator (α-bromophenylacetic acid, BPAA). Subsequently, an electrochemical biosensor was prepared by introducing polymer chains with electrochemical signaling molecules (ferrocene, Fc) onto the electrode surface by photocatalytic (perylene, Py) mediated ATRP using ferrocenylmethyl methacrylate (FMMA) as a monomer. The concentration of thrombin was evaluated by the voltammetric signal generated by square wave voltammetry (SWV), and the result showed that the biosensor was linear between 1.0 ng/mL âˆ¼ 10 fg/mL, with a lower detection limit of 4.0 fg/mL (∼0.1 fM). Moreover, it was shown to be highly selective for thrombin activity in complex serum samples and for thrombin inhibition screening. SIGNIFICANCE: The biosensor is an environmentally friendly and economically efficient strategy while maintaining the advantages of high sensitivity, anti-interference, good stability and simplicity of operation, which has great potential for application in the analysis of complex samples.


Assuntos
Técnicas Biossensoriais , Perileno , DNA/química , Trombina , Polimerização , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Peptídeos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA