Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunol ; 36(1): 17-32, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37878760

RESUMO

Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell-cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.


Assuntos
Síndrome Metabólica , Doença Pulmonar Obstrutiva Crônica , Humanos , Síndrome Metabólica/genética , Espécies Reativas de Oxigênio , Comunicação Celular , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA
2.
Appl Microbiol Biotechnol ; 108(1): 226, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381229

RESUMO

Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.


Assuntos
Terpenos , Triterpenos , Animais , Carbono , Metiltransferases , Processamento de Proteína Pós-Traducional
3.
Arch Pharm (Weinheim) ; : e2400344, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943440

RESUMO

Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.

4.
J Environ Manage ; 352: 120050, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38224641

RESUMO

Dirty-acid wastewater (DW) originating from the non-ferrous metal smelting industry is characterized by a high concentration of H2SO4 and As. During the chemical precipitation treatment, a significant volume of arsenic-containing slag is generated, leading to elevated treatment expenses. The imperative to address DW with methods that are cost-effective, highly efficient, and safe is underscored. This paper conducts a comprehensive analysis of three typical methods to DW treatment, encompassing technical principles, industrial application flow charts, research advancements, arsenic residual treatment, and economic considerations. Notably, the sulfide method emerges as a focal point due to its minimal production of arsenic residue and the associated lowest overall treatment costs. Moreover, in response to increasingly stringent environmental protection policies targeting new pollutants and carbon emissions reduction, the paper explores the evolving trends in DW treatment. These trends encompass rare metal and sulfuric acid recycling, cost-effective H2S production methods, and strategies for reducing, safely disposing of, and harnessing resources from arsenic residue.


Assuntos
Arsênio , Purificação da Água , Arsênio/química , Metais , Águas Residuárias , Conservação dos Recursos Naturais
5.
J Virol ; 96(19): e0095922, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121300

RESUMO

PCV2 has been reported to reduce the protective effects of various vaccines on immunized pigs. Our previous studies showed that the interaction of Cap and host protein gC1qR mediated the PCV2 infection-induced suppression of immune response. Thus, we wondered whether the gC1qR binding site mutant PCV2RmA could be a vaccine strain and whether this mutant PCV2RmA impairs other vaccines. Herein, we showed that PCV2 infection reduced the classic swine fever virus (CSFV) vaccine-induced generation of memory CD4+ T cells through the interaction of Cap with gC1qR. PCV2RmA can effectively induce the production of PCV2-specific antibodies, neutralizing antibodies, and peripheral blood lymphocyte proliferation in piglets at the same levels as the commercial inactivated PCV2 vaccine. The PCV2RmA-induced anti-PCV2 immune responses could eliminate the serum virus and would not lead to pathological lesions like wild-type PCV2. Moreover, compared to the commercial inactivated PCV2 vaccine, PCV2RmA is capable of inducing more durable protective immunity against PCV2 that induced production of PCV2-specific antibodies and neutralizing antibodies for a longer time via stronger induction of memory CD4+ T cells. Importantly, PCV2RmA infection did not impair the CSFV vaccine-induced generation of memory CD4+ T cells. Collectively, our findings showed that PCV2 infection impairs memory CD4+ T-cell generation to affect vaccination and provide evidence for the use of PCV2RmA as an efficient vaccine to prevent PCV2 infection. IMPORTANCE PCV2 is one of the costliest pathogens in pigs worldwide. Usage of PCV2 vaccines can prevent the PCV2 infection-induced clinical syndromes but not the viral spread. Our previous work found that PCV2 infection suppresses the host type I interferon innate immune response and CD4+ T-cell-mediated Th1 immune response through the interaction of Cap with host gC1qR. Here, we showed that the gC1qR binding site mutant PCV2RmA could effectively induce anti-PCV2 immunity and provide more durable protective immunity against wild-type PCV2 infection in pigs. PCV2RmA would not impair the generation of memory CD4+ T cells induced by classic swine fever virus (CSFV) vaccines as wild-type PCV2 did. Therefore, PCV2RmA can serve as a potential vaccine strain to better protect pigs against PCV2 infection.


Assuntos
Linfócitos T CD4-Positivos , Vírus da Febre Suína Clássica , Peste Suína Clássica , Receptores de Complemento , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Proteínas do Capsídeo/genética , Peste Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Memória Imunológica , Interferon Tipo I , Receptores de Complemento/metabolismo , Suínos , Vacinas de Produtos Inativados/genética , Vacinas Virais/genética
6.
Microb Cell Fact ; 22(1): 76, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085866

RESUMO

Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.


Assuntos
Carbono , Engenharia Metabólica , Carbono/metabolismo , Redes e Vias Metabólicas , Via de Pentose Fosfato , Ciclo do Ácido Cítrico , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Environ Res ; 234: 116607, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429402

RESUMO

With the development of industry, heavy metal (HM) pollution of soil has become an increasingly serious problem. Using passivators made of industrial by-products to immobilize HMs in contaminated soil is a promising in-situ remediation technology. In this study, the electrolytic manganese slag (EMS) was modified into a passivator (named M-EMS) by ball milling, and the effects of M-EMS on adsorption of As(V) in aquatic samples and on immobilization of As(V) and other HMs in soil samples were investigated under different conditions. Results demonstrated that M-EMS had a maximum As(V) adsorption capacity of 65.3 mg/g in the aquatic samples. Adding M-EMS to the soil reduced the leaching of As (from 657.2 to 319.8 µg/L) and other HMs after 30 d of incubation, reduced the bioavailability of As(V) and improved the quality and microbial activity of the soil. The mechanism for M-EMS to immobilize As in the soil are complex reactions, ion exchange reaction with As and electrostatic adsorption. This work provides new ideas of using waste residue matrix composites for sustainable remediation of Arsenic in the aquatic environment and soil.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Arsênio/análise , Manganês , Solo/química , Poluentes do Solo/análise , Metais Pesados/química , Eletrólitos , Poluição da Água , Água
8.
Environ Res ; 216(Pt 2): 114442, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202245

RESUMO

The utilization of solid waste for resource recovery and production of value-added products is the theme of green chemistry. Currently, how to using solid wastes to prepare environmentally-functional materials with high performance and strength is one of the hot topics. In this research, electrolytic manganese residue (EMR) was thermally activated with calcite to prepare a silicon-based functionalized adsorbent (C-EMR) for the removal of cadmium (Cd2+, 467.14 mg/g) and lead (Pb2+, 972 mg/g). The thermodynamic results indicated that the removal process of Cd2+ and Pb2+ by C-EMR were endothermic and spontaneous. HNO3 can effectively strip the two adsorbed metals from C-EMR with the stripping efficiency of nearly 80% for Cd2+ and 99.92% for Pb2+, indicating that adsorption and ion exchange may be the main reason for the removal of the metals on C-EMR. Besides, surface precipitation was also responsible for removing some Pb2+ from the aquatic environment according to the X-ray photoelectron spectrometry (XPS) analysis. Results indicate that -SiO3- has stronger affinity with Pb2+ and Cd2+ than other groups ((-MnO2), -OH) by theoretical calculation (VASP, GGA-PBE). This study shows that this novel adsorbent (C-EMR) can be adopted as an environmentally-friendly, inexpensive and efficient adsorbent for removal of Cd2+ and Pb2+ from aquatic solution. This technique not only provides potential adsorbent for the elimination of heavy metals but also proposes an alternative route for the treatment and utilization of waste solid.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Compostos de Manganês/química , Chumbo , Poluentes Químicos da Água/análise , Óxidos/química , Metais Pesados/química , Cinética , Concentração de Íons de Hidrogênio
9.
Appl Microbiol Biotechnol ; 107(11): 3391-3404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126085

RESUMO

Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.


Assuntos
Ginsenosídeos , Panax , Engenharia Metabólica , Ginsenosídeos/metabolismo , Panax/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
10.
Int J Neurosci ; 130(11): 1156-1160, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31944864

RESUMO

Purpose: Sjögren-Larsson syndrome is a rare, autosomal, recessive neurocutaneous disorder caused by mutations in the ALDH3A2 gene, which encodes the fatty aldehyde dehydrogenase enzyme. Deficiency in fatty aldehyde dehydrogenase results in an abnormal accumulation of toxic fatty aldehydes in the brain and skin, which cause spasticity, intellectual disability, ichthyosis, and other clinical manifestations. We present the clinical features and mutation analyses of a case of SLS.Materials and Methods: The family history and clinical data of the patient were collected. Genomic DNA was extracted from peripheral blood samples of the patient and her parents, and next-generation sequencing was performed. The candidate mutation sites that required further validation were then sequenced by Sanger sequencing. Bioinformatics software PSIPRED and RaptorX were used to predict the secondary and tertiary structures of proteins.Results: The patient, a five-year-old girl with complaints of cough for three days and intermittent convulsions for seven hours, was admitted to the hospital. Other clinical manifestations included spastic paraplegia, mental retardation, tooth defects, and ichthyosis. Brain magnetic resonance imaging showed periventricular leukomalacia. Genetic screening revealed compound heterozygous mutations in the ALDH3A2 gene: a frameshift mutation c.779delA (p.K260Rfs*6) and a missense mutation c.1157A > G (p.N386S). Neither of the ALDH3A2 alleles in the compound heterozygote patient were able to generate normal fatty aldehyde dehydrogenase, which were likely responsible for her phenotype of Sjögren-Larsson syndrome.Conclusion: The compound heterozygous mutations found in the ALDH3A2 gene support the diagnosis of Sjögren-Larsson syndrome in the patient and expand the genotype spectrum of the gene.


Assuntos
Aldeído Oxirredutases/genética , Síndrome de Sjogren-Larsson/diagnóstico , Síndrome de Sjogren-Larsson/genética , Pré-Escolar , Feminino , Mutação da Fase de Leitura , Humanos , Mutação de Sentido Incorreto , Linhagem , Síndrome de Sjogren-Larsson/fisiopatologia
11.
Ecotoxicol Environ Saf ; 182: 109454, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31352209

RESUMO

The contamination of perfluoroalkyl substances (PFASs) in the Baiyangdian Lake has exacerbated readily since 2008. This study analyzed the perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in the surface water, sediment, and fish of the Baiyangdian Lake. In the surface water, the total concentration of PFASs ranged in 1193-3462 ng L-1 (mean 1734 ng L-1) in the rainy season and 469-1724 ng L-1 (mean 876 ng L-1) in the dry season. The total concentration of PFASs in the sediment ranged in 1.97-13.3 ng g-1 (mean 6.53 ng g-1). It was found that PFCAs and PFSAs with longer chains were more easily adsorbed in the sediment. Among the collected fish samples, the enrichment of PFASs in the tissues fell in the order of liver > cheek > muscle. For the muscle, stomach, and liver tissues of the fish samples, significant correlations existed between the δ15N values and the concentration of perfluorooctane sulfonic acid (PFOS). The contents of PFOS and perfluorooctanoic acid (PFOA) in the fish were not at a level high enough to significantly risk human health.


Assuntos
Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Monitoramento Ambiental/métodos , Fluorocarbonos/análise , Lagos/química , Poluentes Químicos da Água/análise , Animais , China , Peixes/metabolismo , Sedimentos Geológicos/química , Medição de Risco
12.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795338

RESUMO

Porous organosilica monoliths have attracted much attention from both the academic and industrial fields due to their porous structure; excellent mechanical property and easily functionalized surface. A new mercapto-functionalized silicone monolith from a precursor mixture containing methyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane; and 3-mercaptopropyl(dimethoxy)methylsilane prepared via a two-step acid/base hydrolysis-polycondensation process was reported. Silane precursor ratios and surfactant type were varied to control the networks of porous monolithic gels. Gold nanoparticles were loaded onto the surface of the porous organosilica monolith (POM). Versatile characterization techniques were utilized to investigate the properties of the synthesized materials with and without gold nanoparticles. Scanning electron microscopy was used to investigate the morphology of the as-synthesized porous monolith materials. Fourier transform infrared spectroscopy was applied to confirm the surface chemistry. 29Si nuclear magnetic resonance was used to investigate the hydrolysis and polycondensation of organosilane precursors. Transmission electron microscopy was carried out to prove the existence of well-dispersed gold nanoparticles on the porous materials. Ultraviolet-visible spectroscopy was utilized to evaluate the high catalytic performance of the as-synthesized Au/POM particles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Silanos/química , Dióxido de Silício/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Compostos de Organossilício , Porosidade
13.
ACS Omega ; 9(11): 12779-12788, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524468

RESUMO

The paper introduced hydrophilic functional groups on the surface of the MgO desulfurizer to improve its dispersion and hydrophilicity on the basis of reducing the particle size of the MgO desulfurizer to the nanometer level. Mechanical grinding technology was used to improve the traditional two-step method to lay the foundation for its large-scale production. The stability test showed that the ζ potential of the 5 wt % modified MgO desulfurizer was greater than 50 mV with 30 days of storage, and the sedimentation rate was not more than 7%. The dissolution reactivity and kinetics experiments showed that the decrease of particle size and the increase of hydrophilicity and dispersion were conducive to accelerating the dissolution rate of the MgO desulfurizer and reducing the apparent activation energy. Meanwhile, the good dissolution rate of the modified MgO nanofluids prepared by the improved method could reduce the liquid film mass transfer resistance and prolonged the penetration time.

14.
J Hazard Mater ; 476: 135108, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38972202

RESUMO

Struvite crystallization, a promising technology for nutrient recovery from wastewater, is facing considerable challenges due to the presence of emerging contaminants such as microplastics (MPs) ubiquitously found in wastewater. Here, we investigate the roles of MPs and humic acid (HA) in struvite crystallization in batch and fluidized-bed reactors (FBRs) using synthetic and real wastewater with a Mg:N:P molar ratio of 1:3:(1-1.3) at an initial pH of 11. Batch reactor (BR) experiment results show that MPs expedited the nucleation and growth rates of struvite (e.g., the rate of crystal growth in the presence of 30 mg L-1 of polyethylene terephthalate (PET) was 1.43 times higher than that in the blank system), while HA hindered the formation of struvite. X-ray diffraction and the Rietveld refinement analysis revealed that the presence of MPs and HA can result in significant changes in phase compositions of the reclaimed precipitates, with over 80 % purity of struvite found in the precipitates from suspensions in the presence of 30 mg L-1 of MPs. Further characterizations demonstrated that MPs act as seeds of struvite nucleation, spurring the formation of well-defined struvite, while HA favors the formation of newberyite rather than struvite in both reactors. These findings highlight the need for a more comprehensive understanding of the interactions between emerging contaminants and struvite crystallization processes to optimize nutrient recovery strategies for mitigating their adverse impact on the quality and yield of struvite-based fertilizers. ENVIRONMENTAL IMPLICATION: The presence of microplastics in wastewater poses a significant challenge to struvite crystallization for nutrient recovery, as it accelerates nucleation and growth rates of struvite crystals. This can lead to changes in the phase compositions of the reclaimed precipitates, with implications for the quality and yield of struvite-based fertilizers. Additionally, the presence of humic acid hinders the formation of struvite, favoring the formation of other minerals like newberyite. Understanding the interactions between emerging contaminants and struvite crystallization processes is crucial for optimizing nutrient recovery strategies and mitigating the environmental impact of these contaminants on water quality and struvite-based fertilizers.

15.
Int J Biol Macromol ; 254(Pt 3): 127994, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952800

RESUMO

Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Alginatos/química , Adsorção , Porosidade , Metais Pesados/química , Géis/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
16.
J Hazard Mater ; 469: 133889, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422735

RESUMO

In this study, sulfur-containing iron carbon nanocomposites (S@Fe-CN) were synthesized by calcining iron-loaded biomass and utilized to activate persulfate (PS) for the combined chemical oxidation and microbial remediation of petroleum-polluted soil. The highest removal efficiency of total petroleum hydrocarbons (TPHs) was achieved at 0.2% of activator, 1% of PS and 1:1 soil-water ratio. The EPR and quenching experiments demonstrated that the degradation of TPHs was caused by the combination of 1O2,·OH, SO4·-, and O2·-. In the S@Fe-CN activated PS (S@Fe-CN/PS) system, the degradation of TPHs underwent two phases: chemical oxidation (days 0 to 3) and microbial degradation (days 3 to 28), with kinetic constants consistent with the pseudo-first-order kinetics of chemical and microbial remediation, respectively. In the S@Fe-CN/PS system, soil enzyme activities decreased and then increased, indicating that microbial activities were restored after chemical oxidation under the protection of the activators. The microbial community analysis showed that the S@Fe-CN/PS group affected the abundance and structure of microorganisms, with the relative abundance of TPH-degrading bacteria increased after 28 days. Moreover, S@Fe-CN/PS enhanced the microbial interactions and mitigated microbial competition, thereby improving the ability of indigenous microorganisms to degrade TPHs.


Assuntos
Petróleo , Poluentes do Solo , Ferro/química , Poluentes do Solo/metabolismo , Poluição Ambiental , Hidrocarbonetos/química , Solo/química
17.
J Hazard Mater ; 470: 134162, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555670

RESUMO

In electro-Fenton (EF), development of a bifunctional electrocatalyst to realize simultaneous H2O2 generation and activation efficiently for generating reactive species remains a challenge. In particular, a nonradical-mediated EF is more favorable for actual wastewater remediation, and deserves more attention. In this study, three-dimensional graphene loaded with Fe3O4 nanoparticles (Fe3O4@3D-GNs) with abundant oxygen-containing functional groups (OFGs) was synchronously synthesized using a NaCl-template method and served as a cathode to establish a highly efficient and selective EF process for contaminant degradation. The amounts of OFGs can be effectively modulated via the pyrolysis temperature to regulate the 2e- oxygen reduction reaction activity and reactive oxygen species (ROS) production. The optimized Fe3O4@3D-GNs synthesized at 750 °C (Fe3O4@3D-GNs-750) with the highest -C-O-C and -C꞊O group ratios exhibited the maximum H2O2 and 1O2 yields during electrocatalysis, thus showing remarkable versatility for eliminating organic contaminants from surface water bodies. Experiments and theoretical calculations have demonstrated the dominant role of -C-O-C in generating H2O2 and the positive influence of -C꞊O sites on the production of 1O2. Moreover, the surface-bound Fe(II) favors the generation of surface-bound •OH, which steers a more favorable oxidative conversion of H2O2 to 1O2. Fe3O4@3D-GNs were proven to be less pH-dependent, low-energy, stable, and recyclable for practical applications in wastewater purification. This study provides an innovative strategy to engineer active sites to achieve the selective electrocatalysis for eliminating pollution and reveals a novel perspective for 1O2-generation mechanism in the Fenton reaction.

18.
Food Chem ; 459: 140370, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986208

RESUMO

Due to the excellent health benefits of rhamnogalacturonan I (RG-I)-enriched pectin, there has been increasing research interest in its gelling properties. To elucidate its structure-gelation relationship, chemical modifications were used to obtain RG-I-enriched pectin (P11). Then, enzymatic modification was performed to obtain debranched pectins GP11 and AP11, respectively. The effects of RG-I side chains on structural characteristics (especially spatial conformation) and gelling properties were investigated. Among the low-methoxylated pectins (LMPs), AP11, with a loose conformation (Dmax 52 nm) showed the poorest gelling, followed by GP11. In addition to primary structure, spatial conformation (Dmax and Rg) also showed strong correlations (r2 > 0.8) with gelation. We speculate that compact conformation may shorten distance between pectin chains and reduces steric hindrance, contributing to formation of strong gel network. This is particularly important in LMPs with abundant side chains. The results provide novel insights into relationship between spatial conformation and gelling properties of RG-I-enriched pectin.

19.
ACS Omega ; 8(38): 34678-34686, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779968

RESUMO

Although the addition of fine particles can enhance mass transfer, the stability of suspension is still a challenge. Responding to this, this study introduced carbon quantum dots (CQDs) with good hydrophilicity into a desulfurizer. N-doped carbon quantum dots (N-CQDs) were prepared by the hydrothermal method and characterized by TEM, FT-IR, and XPS. The stability and rheological properties of MDEA-based CQD solutions with different concentrations were studied. CQD solutions with low concentrations showed good stability, and the viscosity of CQD solutions was positively correlated with concentration and inversely correlated with temperature. The desulfurization experiment showed that the desulfurization effect and mass transfer enhancement of MDEA-based CQD solutions were coinfluenced by the viscosity and concentration of the solution; 0.01 vol % CQD solution had the best desulfurization effect, and the mass transfer coefficient was 0.66 mol/(m3h kPa), which increased by 26.61% compared to the base solution.

20.
Carbohydr Polym ; 317: 121087, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364957

RESUMO

The amidation of pectin by amino acids has been widely applied due to its safety and excellent gelling properties. This study systematically examined the effects of pH on the gelling properties of lysine-amidated pectin during amidation and gelation. Pectin was amidated over the range of pH 4-10, and the amidated pectin obtained at pH 10 showed the highest degree of amidation (DA, 27.0 %) due to the de-esterification, electrostatic attraction, and the stretching state of pectin. Moreover, it also exhibited the best gelling properties due to its greater numbers of calcium-binding regions (carboxyl groups) and hydrogen bond donors (amide groups). During gelation, the gel strength of CP (Lys 10) at pH 3-10 first increased and then decreased, with the highest gel strength at pH 8, which was due to the deprotonation of carboxyl groups, protonation of amino groups, and ß-elimination. These results show that pH plays a key role in both amidation and gelation, with distinct mechanisms, and would provide a basis for the preparation of amidated pectins with excellent gelling properties. This will facilitate their application in the food industry.


Assuntos
Citrus , Lisina , Lisina/metabolismo , Pectinas/química , Esterificação , Concentração de Íons de Hidrogênio , Citrus/química , Géis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA