Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110312

RESUMO

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457847

RESUMO

The functional networks of the human brain exhibit the structural characteristics of a scale-free topology, and these neural networks are exposed to the electromagnetic environment. In this paper, we consider the effects of magnetic induction on synchronous activity in biological neural networks, and the magnetic effect is evaluated by the four-stable discrete memristor. Based on Rulkov neurons, a scale-free neural network model is established. Using the initial value and the strength of magnetic induction as control variables, numerical simulations are carried out. The research reveals that the scale-free neural network exhibits multiple coexisting behaviors, including resting state, period-1 bursting synchronization, asynchrony, and chimera states, which are dependent on the different initial values of the multi-stable discrete memristor. In addition, we observe that the strength of magnetic induction can either enhance or weaken the synchronization in the scale-free neural network when the parameters of Rulkov neurons in the network vary. This investigation is of significant importance in understanding the adaptability of organisms to their environment.

3.
Chem Rev ; 121(18): 11458-11526, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-33370102

RESUMO

Type 1 diabetes therapies that afford tighter glycemic control in a more manageable and painless manner for patients has remained a central focus of next-generation diabetes therapies. In many of these emerging technologies, namely, self-regulated insulin delivery and cell replacement therapies, hydrogels are employed to mitigate some of the most long-standing challenges. In this Review, we summarize recent developments in the use of hydrogels for both insulin delivery and insulin-producing cell therapies for type 1 diabetes management. We first outline perspectives in glucose sensitive hydrogels for smart insulin delivery, pH sensitive polymeric hydrogels for oral insulin delivery, and other physiochemical signals used to trigger insulin release from hydrogels. We, then, investigate the use of hydrogels in the encapsulation of insulin secreting cells with a special emphasis on hydrogels designed to mitigate the foreign body response, provide a suitable extracellular microenvironment, and improve mass transfer through oxygen supplementation and vascularization. Evaluations of limitations and promising directions for future research are also considered. Continuing interdisciplinary and collaborative research efforts will be required to produce hydrogels with instructive biochemical microenvironments necessary to address the enduring challenges of emerging type 1 diabetes therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Hidrogéis , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/metabolismo , Humanos , Insulina , Polímeros
4.
Small ; 18(8): e2104899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34897997

RESUMO

Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-ß) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-ß cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Cães , Fibrose , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos SCID , Ratos
5.
Adv Funct Mater ; 31(47): 2103477, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34512227

RESUMO

SARS-CoV-2, the virus that caused the COVID-19 pandemic, can remain viable and infectious on surfaces for days, posing a potential risk for fomite transmission. Liquid-based disinfectants, such as chlorine-based ones, have played an indispensable role in decontaminating surfaces but they do not provide prolonged protection from recontamination. Here a safe, inexpensive, and scalable membrane with covalently immobilized chlorine, large surface area, and fast wetting that exhibits long-lasting, exceptional killing efficacy against a broad spectrum of bacteria and viruses is reported. The membrane achieves a more than 6 log reduction within several minutes against all five bacterial strains tested, including gram-positive, gram-negative, and drug-resistant ones as well as a clinical bacterial cocktail. The membrane also efficiently deactivated nonenveloped and enveloped viruses in minutes. In particular, a 5.17 log reduction is achieved against SARS-CoV-2 after only 10 min of contact with the membrane. This membrane may be used on high-touch surfaces in healthcare and other public facilities or in air filters and personal protective equipment to provide continuous protection and minimize transmission risks.

6.
Proc Natl Acad Sci U S A ; 115(2): E263-E272, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279393

RESUMO

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/fisiologia , Alginatos , Animais , Diabetes Mellitus Experimental/terapia , Dimetilformamida , Cães , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Hidrogéis , Camundongos , Camundongos SCID , Polimetil Metacrilato , Ratos
7.
Pharm Res ; 37(10): 202, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32968829

RESUMO

The development of new diabetes treatment strategies has garnered much interest given that conventional management therapies for type 1 diabetes fail to provide optimal glycemic control while creating a high burden of self-care to patients. Stimuli-responsive, "closed-loop" systems are particularly attractive due to their ability to mimic dynamic ß cell function by releasing insulin in response to fluctuating glucose levels in real-time and with minimal patient discomfort. In this short review, we focus on stimuli-responsive, reservoir-based insulin delivery devices. We explore and evaluate systems that are either physiologically or externally triggered. While obstacles remain before such technologies can be translated to clinical settings, further optimization of delivery systems forebodes that these technologies will have a tremendous impact on type 1 diabetes treatment.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Insulina/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Polímeros Responsivos a Estímulos
8.
Nano Lett ; 19(5): 3256-3266, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965009

RESUMO

Breast cancer develops from local tissue but is characterized by a distinct metastatic pattern involving regional lymph nodes and distant organs, which is the primary cause of high mortality in breast cancer patients. Herein, optimal docking nanoparticles (NPs) composed of a laurate-functionalized Pt(IV) prodrug (Pt(lau)), human serum albumin (HSA), and lecithin were predicted by computational modeling, prepared by nanoprecipitation, and validated by fluorescence spectroscopy. As macrophages have been reported to be preferentially recruited by breast cancer, Rex, the exosome spontaneously secreted by murine RAW 264.7 cells, was isolated to encapsulate the NPs. This high-performance delivery system, called NPs/Rex, possessed the desired physicochemical properties, enhanced colloidal stability, and redox-triggered release profile. Investigations of cytodynamics proved that NPs/Rex was internalized through multiple pathways, avoided entrapment by bilayers, and successfully platinized nucleic acids after bioreduction in the cytosol. Intracellular activation of Pt(lau) was confirmed by observing the characteristic effects of cisplatin on cell proliferation and the cell cycle following treatment with NPs/Rex. During in vivo application, the bioinspired Rex coating endowed docking NPs with prolonged blood circulation, smart organ tropism, and enhanced biocompatibility, as well as robust platinum (Pt) chemotherapy for breast cancer cells in orthotopic tumors of fat pads and metastatic nodules of lungs. Therefore, this favorable nanoplatform might provide valuable insight into the derivatization and development of Pt anticancer drugs used currently in the clinic.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Pró-Fármacos/farmacologia , Animais , Neoplasias da Mama/patologia , Exossomos/química , Feminino , Humanos , Lauratos/química , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Nanopartículas/química , Platina/química , Pró-Fármacos/química , Células RAW 264.7/química , Albumina Sérica Humana/química , Albumina Sérica Humana/farmacologia
9.
Langmuir ; 35(5): 1927-1934, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30441901

RESUMO

Reducing biofouling while increasing lubricity of inserted medical catheters is highly desirable to improve their comfort, safety, and long-term use. We report here a simple method to create thin (∼30 µm) conformal lubricating hydrogel coatings on catheters. The key to this method is a three-step process including shape-forming, gradient cross-linking, and swell-peeling (we label this method as SGS). First, we took advantage of the fast gelation of agar to form a hydrogel layer conformal to catheters; then, we performed a surface-bound UV cross-linking of acrylamide mixed in agar in open air, purposely allowing gradual oxygen inhibition of free radicals to generate a gradient of cross-linking density across the hydrogel layer; and finally, we caused the hydrogel to swell to let the non-cross-linked/loosely attached hydrogel fall off, leaving behind a surface-bound, thin, and mostly uniform hydrogel coating. This method also allowed easy incorporation of different polymerizable monomers to obtain multifunctionality. For example, incorporating an antifouling, zwitterionic moiety sulfobetaine in the hydrogel reduced both in vitro protein adsorption and in vivo foreign-body response in mice. The addition of a biocidal N-halamine monomer to the hydrogel coating deactivated both Staphylococcus aureus ( S. aureus) and Escherichia coli ( E. coli) O157:H7 within 30 min of contact and reduced biofilm formation by 90% compared to those of uncoated commercial catheters when challenged with S. aureus for 3 days. The lubricating, antibiofouling hydrogel coating may bring clinical benefits in the use of urinary and venous catheters as well as other types of medical devices.


Assuntos
Incrustação Biológica/prevenção & controle , Catéteres , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Betaína/análogos & derivados , Betaína/síntese química , Materiais Revestidos Biocompatíveis/síntese química , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Hidrogéis/síntese química , Camundongos Endogâmicos C57BL , Staphylococcus aureus/efeitos dos fármacos
10.
Nat Mater ; 16(6): 671-680, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319612

RESUMO

Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Próteses e Implantes/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Reação a Corpo Estranho/imunologia , Camundongos , Primatas
12.
Nat Mater ; 14(6): 643-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985456

RESUMO

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.


Assuntos
Reação a Corpo Estranho/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Primatas
13.
Soft Matter ; 12(26): 5739-46, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27275624

RESUMO

Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels.


Assuntos
Proliferação de Células , Técnicas de Cocultura , Linhagem Celular Tumoral , Células-Tronco Embrionárias/citologia , Humanos , Pâncreas/citologia
14.
Acc Chem Res ; 47(6): 1902-11, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24884022

RESUMO

CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.


Assuntos
Biotecnologia/métodos , DNA/química , Nanotecnologia/métodos , Silicatos de Alumínio , Argila , Liberação Controlada de Fármacos , Enzimas/química , Hidrogéis/química , Lipídeos/química , Nanopartículas/química , Nanoestruturas/química , Reação em Cadeia da Polimerase , Engenharia de Proteínas/métodos , Proteínas/química
15.
Proc Natl Acad Sci U S A ; 108(32): 12996-3001, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21784981

RESUMO

Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.


Assuntos
Técnicas de Química Combinatória/métodos , Técnicas de Transferência de Genes , Espaço Intracelular/metabolismo , Nanopartículas/química , Animais , Fator VII/metabolismo , Inativação Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Camundongos , RNA Interferente Pequeno/metabolismo
16.
Adv Mater ; 36(27): e2403594, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639424

RESUMO

Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.


Assuntos
Glicemia , Insulina , Insulina/administração & dosagem , Animais , Camundongos , Glicemia/análise , Cânula , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Hidrogéis/química , Sistemas de Infusão de Insulina , Elastômeros/química , Automação , Desenho de Equipamento
17.
Semin Pediatr Surg ; 32(3): 151311, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276782

RESUMO

Necrotizing enterocolitis (NEC) is a devastating neonatal intestinal disease associated with significant morbidity and mortality. Although decades of research have been dedicated to understanding the pathogenesis of NEC and developing therapies, it remains the leading cause of death among neonatal gastrointestinal diseases. Mesenchymal stem cells (MSCs) have garnered significant interest recently as potential therapeutic agents for the treatment of NEC. They have been shown to rescue intestinal injury and reduce the incidence and severity of NEC in various preclinical animal studies. MSCs and MSC-derived organoids and tissue engineered small intestine (TESI) have shown potential for the treatment of long-term sequela of NEC such as short bowel syndrome, neurodevelopmental delay, and chronic lung disease. Although the advances made in the use of MSCs are promising, further research is needed prior to the widespread use of these cells for the treatment of NEC.


Assuntos
Enterocolite Necrosante , Doenças do Recém-Nascido , Síndrome do Intestino Curto , Animais , Recém-Nascido , Humanos , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/terapia , Células-Tronco/patologia , Intestinos , Síndrome do Intestino Curto/terapia
18.
Semin Perinatol ; 47(3): 151727, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964032

RESUMO

Stem cell research and the use of stem cells in therapy have seen tremendous growth in the last two decades. Neonatal intestinal disorders such as necrotizing enterocolitis, Hirschsprung disease, and gastroschisis have high morbidity and mortality and limited treatment options with varying success rates. Stem cells have been used in several pre-clinical studies to address various neonatal disorders with promising results. Stem cell and patient population selection, timing of therapy, as well as safety and quality control are some of the challenges that must be addressed prior to the widespread clinical application of stem cells. Further research and technological advances such as the use of cell delivery technology can address these challenges and allow for continued progress towards clinical translation.


Assuntos
Enterocolite Necrosante , Gastrosquise , Doenças do Recém-Nascido , Recém-Nascido , Humanos , Intestinos , Transplante de Células-Tronco/métodos , Enterocolite Necrosante/terapia
19.
Sci Rep ; 13(1): 15641, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730815

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Oxigênio , Diabetes Mellitus Tipo 1/terapia , Hipóxia , Materiais Biocompatíveis
20.
Nat Biomed Eng ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052996

RESUMO

Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA