Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 18(3): e1010024, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239675

RESUMO

Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Envelhecimento/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Genômica/métodos , RNA
2.
Genome Res ; 31(3): 512-528, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33419731

RESUMO

Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.


Assuntos
Culicidae/genética , Culicidae/virologia , Elementos de DNA Transponíveis/genética , Genômica , RNA Interferente Pequeno/genética , Vírus , Animais
4.
Nucleic Acids Res ; 47(11): 5603-5616, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216042

RESUMO

The nematode Caenorhabditis elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both 'silencing' siRNAs bound by Worm-specific Argonautes (WAGO) and 'activating' siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here, we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partially rescued null mutant strain (WM193), this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements and an increased number of small RNAs that match enhancers in both drh-3 and csr-1 mutants. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to sites with increased silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.


Assuntos
Caenorhabditis elegans/genética , Cromatina/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Histonas/metabolismo , Metilação
5.
Nature ; 485(7397): 195-200, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22575959

RESUMO

R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/ß-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.


Assuntos
Receptores Wnt/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Animais , Polaridade Celular/fisiologia , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Feminino , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Via de Sinalização Wnt , Xenopus , Peixe-Zebra , beta Catenina/metabolismo
6.
Mol Cell ; 39(2): 171-83, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20670887

RESUMO

Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.


Assuntos
Regulação da Expressão Gênica/fisiologia , Glicólise/fisiologia , Lipídeos/biossíntese , Via de Pentose Fosfato/fisiologia , Biossíntese de Proteínas/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular Transformada , Proliferação de Células , Genômica/métodos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipídeos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica/métodos , Camundongos , Complexos Multiproteicos , Neoplasias/genética , Neoplasias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Proteínas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
7.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496444

RESUMO

A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop clinical, mostly pulmonary, TB. To dissect mechanisms of susceptibility in immunocompetent individuals, we developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: development of necrotic lung lesions after infection with virulent Mtb. In this study, we explored the connectivity of the sst1-regulated pathways during prolonged macrophage activation with TNF. We determined that the aberrant response of the sst1-susceptible macrophages to TNF was primarily driven by conflicting Myc and antioxidant response pathways that resulted in a coordinated failure to properly sequester intracellular iron and activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNß superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. Our findings suggest a novel link between metabolic dysregulation in macrophages and susceptibility to TB, offering insights into potential therapeutic targets aimed at modulating macrophage function and improving TB control.

8.
J Hazard Mater ; 424(Pt C): 127553, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736195

RESUMO

Antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in the reclaimed water, posing a potential threat to human and ecological health. Nowadays, the reuse technology of reclaimed water has been widely concerned, but the removal of antibiotics, ARB and ARGs in reclaimed water has not been sufficiently studied. This study used TiO2 nanotube arrays (TNTs) decorated with Ag/SnO2-Sb nanoparticles (TNTs-Ag/SnO2-Sb) as the anode and Ti-Pd/SnO2-Sb as the cathode to construct an efficient photoelectrocatalytic (PEC) system. In this system, 99.9% of ARB was inactivated in 20 min, meanwhile, ARGs was removed within 30 min, and antibiotics were almost completely degraded within 1 h. Furthermore, the effects of system parameters on the removals of antibiotics, ARB and ARGs were also studied. The redox performance of the system was verified by adding persulfate. Escherichia coli, as a representative microorganism in aquatic environments, was used to evaluate the ecotoxicity of PEC treated chloramphenicol (CAP) solution. The ecotoxicity of CAP solution was significantly reduced after being treated by PEC. In addition, transformation intermediates of CAP were identified using liquid chromatography-tandems mass spectrometry (LC-MS/MS) and the possible degradation pathways were proposed. This study could provide a potential alternative method for controlling antibiotic resistance and protecting the quality of reclaimed water.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Cromatografia Líquida , Escherichia coli/genética , Humanos , Espectrometria de Massas em Tandem , Águas Residuárias
9.
Am J Physiol Endocrinol Metab ; 300(2): E327-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21045173

RESUMO

Declines in skeletal muscle size and strength, often seen with chronic wasting diseases, prolonged or high-dose glucocorticoid therapy, and the natural aging process in mammals, are usually associated with reduced physical activity and testosterone levels. However, it is not clear whether the decline in testosterone and activity are causally related. Using a mouse model, we found that removal of endogenous testosterone by orchidectomy results in an almost complete cessation in voluntary wheel running but only a small decline in muscle mass. Testosterone replacement restored running behavior and muscle mass to normal levels. Orchidectomy also suppressed the IGF-I/Akt pathway, activated the atrophy-inducing E3 ligases MuRF1 and MAFBx, and suppressed several energy metabolism pathways, and all of these effects were reversed by testosterone replacement. The study also delineated a distinct, previously unidentified set of genes that is inversely regulated by orchidectomy and testosterone treatment. These data demonstrate the necessity of testosterone for both speed and endurance of voluntary wheel running in mice and suggest a potential mechanism for declined activity in humans where androgens are deficient.


Assuntos
Expressão Gênica/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Orquiectomia , Corrida/fisiologia , Transdução de Sinais/fisiologia , Testosterona/farmacologia , Anatomia Transversal , Animais , Western Blotting , Peso Corporal/fisiologia , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Tamanho do Órgão/fisiologia , Resistência Física/fisiologia , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/sangue
10.
Elife ; 82019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31845649

RESUMO

Without transposon-silencing Piwi-interacting RNAs (piRNAs), transposition causes an ovarian atrophy syndrome in Drosophila called gonadal dysgenesis (GD). Harwich (Har) strains with P-elements cause severe GD in F1 daughters when Har fathers mate with mothers lacking P-element-piRNAs (i.e. ISO1 strain). To address the mystery of why Har induces severe GD, we bred hybrid Drosophila with Har genomic fragments into the ISO1 background to create HISR-D or HISR-N lines that still cause Dysgenesis or are Non-dysgenic, respectively. In these lines, we discovered a highly truncated P-element variant we named 'Har-P' as the most frequent de novo insertion. Although HISR-D lines still contain full-length P-elements, HISR-N lines lost functional P-transposase but retained Har-P's that when crossed back to P-transposase restores GD induction. Finally, we uncovered P-element-piRNA-directed repression on Har-P's transmitted paternally to suppress somatic transposition. The Drosophila short Har-P's and full-length P-elements relationship parallels the MITEs/DNA-transposase in plants and SINEs/LINEs in mammals.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Transposases/metabolismo , Animais , Feminino , Dosagem de Genes , Inativação Gênica , Células Germinativas/metabolismo , Ovário/metabolismo , Pupa/genética , RNA Interferente Pequeno/genética
11.
J Mol Neurosci ; 69(2): 264-285, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31250273

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Glucuronidase/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Glucuronidase/metabolismo , Proteínas Klotho , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
12.
BMC Bioinformatics ; 6: 242, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16202129

RESUMO

BACKGROUND: The sequencing of the human genome has enabled us to access a comprehensive list of genes (both experimental and predicted) for further analysis. While a majority of the approximately 30,000 known and predicted human coding genes are characterized and have been assigned at least one function, there remains a fair number of genes (about 12,000) for which no annotation has been made. The recent sequencing of other genomes has provided us with a huge amount of auxiliary sequence data which could help in the characterization of the human genes. Clustering these sequences into families is one of the first steps to perform comparative studies across several genomes. RESULTS: Here we report a novel clustering algorithm (CLUGEN) that has been used to cluster sequences of experimentally verified and predicted proteins from all sequenced genomes using a novel distance metric which is a neural network score between a pair of protein sequences. This distance metric is based on the pairwise sequence similarity score and the similarity between their domain structures. The distance metric is the probability that a pair of protein sequences are of the same Interpro family/domain, which facilitates the modelling of transitive homology closure to detect remote homologues. The hierarchical average clustering method is applied with the new distance metric. CONCLUSION: Benchmarking studies of our algorithm versus those reported in the literature shows that our algorithm provides clustering results with lower false positive and false negative rates. The clustering algorithm is applied to cluster several eukaryotic genomes and several dozens of prokaryotic genomes.


Assuntos
Algoritmos , Redes Neurais de Computação , Alinhamento de Sequência , Análise de Sequência de Proteína/métodos , Benchmarking , Análise por Conglomerados , Curva ROC , Homologia de Sequência de Aminoácidos , Validação de Programas de Computador
13.
Mol Cell Biol ; 33(2): 194-212, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23109432

RESUMO

Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.


Assuntos
Envelhecimento/genética , Mitocôndrias/metabolismo , Junção Neuromuscular/patologia , Proteoma/análise , Sarcopenia/patologia , Transcriptoma , Envelhecimento/metabolismo , Animais , DNA Mitocondrial/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Imuno-Histoquímica , Modelos Lineares , Masculino , Análise em Microsséries , Mitocôndrias/genética , Mitocôndrias/patologia , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Mudanças Depois da Morte , Proteômica , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Regulação para Cima
14.
BioData Min ; 1(1): 4, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18822150

RESUMO

BACKGROUND: Contrary to the traditional biology approach, where the expression patterns of a handful of genes are studied at a time, microarray experiments enable biologists to study the expression patterns of many genes simultaneously from gene expression profile data and decipher the underlying hidden biological mechanism from the observed gene expression changes. While the statistical significance of the gene expression data can be deduced by various methods, the biological interpretation of the data presents a challenge. RESULTS: A method, called CisTransMine, is proposed to help infer the underlying biological mechanisms for the observed gene expression changes in microarray experiments. Specifically, this method will predict potential cis-regulatory elements in promoter regions which could regulate gene expression changes. This approach builds on the MotifADE method published in 2004 and extends it with two modifications: up-regulated genes and down-regulated genes are tested separately and in addition, tests have been implemented to identify combinations of transcription factors that work synergistically. The method has been applied to a genome wide expression dataset intended to study myogenesis in a mouse C2C12 cell differentiation model. The results shown here both confirm the prior biological knowledge and facilitate the discovery of new biological insights. CONCLUSION: The results validate that the CisTransMine approach is a robust method to uncover the hidden transcriptional regulatory mechanisms that can facilitate the discovery of mechanisms of transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA