Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur Radiol ; 30(7): 3650-3659, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32162003

RESUMO

OBJECTIVES: To investigate the value of radiomics based on CT imaging in predicting invasive adenocarcinoma manifesting as pure ground-glass nodules (pGGNs). METHODS: This study enrolled 395 pGGNs with histopathology-confirmed benign nodules or adenocarcinoma. A total of 396 radiomic features were extracted from each labeled nodule. A Rad-score was constructed with the least absolute shrinkage and selection operator (LASSO) in the training set. Multivariate logistic regression analysis was conducted to establish the radiographic model and the combined radiographic-radiomics model. The predictive performance was validated by receiver operating characteristic (ROC) curve. Based on the multivariate logistic regression analysis, an individual prediction nomogram was developed and the clinical utility was assessed. RESULTS: Five radiomic features and four radiographic features were selected for predicting the invasive lesions. The combined radiographic-radiomics model (AUC 0.77; 95% CI, 0.69-0.86) performed better than the radiographic model (AUC 0.71; 95% CI, 0.62-0.81) and Rad-score (AUC 0.72; 95% CI, 0.63-0.81) in the validation set. The clinical utility of the individualized prediction nomogram developed using the Rad-score, margin, spiculation, and size was confirmed in the validation set. The decision curve analysis (DCA) indicated that using a model with Rad-score to predict the invasive lesion would be more beneficial than that without Rad-score and the clinical model. CONCLUSIONS: The proposed radiomics-based nomogram that incorporated the Rad-score, margin, spiculation, and size may be utilized as a noninvasive biomarker for the assessment of invasive prediction in patients with pGGNs. KEY POINTS: • CT-based radiomics analysis helps invasive prediction manifested as pGGNs. • The combined radiographic-radiomics model may be utilized as a noninvasive biomarker for predicting invasive lesion for pGGNs. • Radiomics-based individual nomogram may serve as a vital decision support tool to identify invasive pGGNs, obviating further workup and blind follow-up.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Feminino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/patologia , Análise Multivariada , Invasividade Neoplásica , Nomogramas , Curva ROC , Tomografia Computadorizada por Raios X/métodos
2.
J Environ Manage ; 231: 635-645, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390448

RESUMO

The biodiversity-productivity relationship is critical for better predicting ecosystem responses to climate change and human disturbance. However, it remains unclear about the effects of climate change, land use shifts, plant diversity, and their interactions on productivity partitioning above- and below-ground components in alpine grasslands on the Tibetan Plateau. To answer this question, we conducted field surveys at 33 grazed vs. fenced paired sites that are distributed across the alpine meadow, steppe, and desert-steppe zones on the northern Tibetan Plateau in early August of 2010-2013. Generalized additive models (GAMs) showed that aboveground net primary productivity (ANPP) linearly increased with growing season precipitation (GSP) while belowground net primary productivity (BNPP) decreased with growing season temperature (GST). Compared to grazed sites, short-term fencing did not alter the patterns of ANPP along climatic gradients but tended to decrease BNPP at moderate precipitation levels of 200 mm < GSP <450 mm. We also found that ANPP and BNPP linearly increased with species richness, ANPP decreased with Shannon diversity index, and BNPP did not correlate with the Shannon diversity index. Fencing did not alter the relationships between productivity components and plant diversity indices. Generalized additive mixed models furtherly confirmed that the interaction of localized plant diversity and climatic condition nonlinearly regulated productivity partitioning of alpine grasslands in this area. Finally, structural equation models (SEMs) revealed the direction and strength of causal links between biotic and abiotic variables within alpine grassland ecosystems. ANPP was controlled directly by GSP (0.53) and indirectly via species richness (0.41) and Shannon index (-0.12). In contrast, BNPP was influenced directly by GST (-0.43) and indirectly by GSP via species richness (0.05) and Shannon index (-0.02). Therefore, we recommend using a joint approach of GAMs and SEMs for better understanding mechanisms behind the relationship between biodiversity and ecosystem function under climate change and human disturbance.


Assuntos
Ecossistema , Pradaria , Biomassa , Mudança Climática , Humanos , Chuva , Tibet
3.
ScientificWorldJournal ; 2013: 415318, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459432

RESUMO

Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Microclima , Temperatura , Análise de Variância , Biomassa , Nitrogênio/metabolismo , Solo/química , Tibet
4.
Front Oncol ; 12: 772770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186727

RESUMO

OBJECTIVES: EGFR testing is a mandatory step before targeted therapy for non-small cell lung cancer patients. Combining some quantifiable features to establish a predictive model of EGFR expression status, break the limitations of tissue biopsy. MATERIALS AND METHODS: We retrospectively analyzed 1074 patients of non-small cell lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI, captured the clinicopathological features, analyzed traditional radiology features, and extracted radiomic, and deep learning features. The cases were randomly divided into training and test set. We carried out feature screening; then applied the light GBM algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused models to predict EGFR mutation conditions. The efficiency of models was evaluated by ROC and PRC curves. RESULTS: We successfully established Modelclinical, Modelradiomic, ModelCNN (based on clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical (combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical (combining clinical-radiology, radiomic, and deep learning features). Among the prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There was no significant difference in the AUC values between ModelCNN+radiomic+clinical and ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of clinical-radiology features did not effectively improve the efficacy of Modelradiomic. CONCLUSIONS: Either deep learning or radiomic signature-based models can provide a fairly accurate non-invasive prediction of EGFR expression status. The model combined both features effectively enhanced the performance of radiomic models and provided marginal enhancement to deep learning models. Collectively, fusion models offer a novel and more reliable way of providing the efficacy of currently developed prediction models, and have far-reaching potential for the optimization of noninvasive EGFR mutation status prediction methods.

5.
Front Oncol ; 11: 722106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976788

RESUMO

PURPOSE: This study aims to develop a CT-based radiomics approach for identifying the uncommon epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer (NSCLC). METHODS: This study involved 223 NSCLC patients (107 with uncommon EGFR mutation-positive and 116 with uncommon EGFR mutation-negative). A total of 1,269 radiomics features were extracted from the non-contrast-enhanced CT images after image segmentation and preprocessing. Support vector machine algorithm was used for feature selection and model construction. Receiver operating characteristic curve analysis was applied to evaluate the performance of the radiomics signature, the clinicopathological model, and the integrated model. A nomogram was developed and evaluated by using the calibration curve and decision curve analysis. RESULTS: The radiomics signature demonstrated a good performance for predicting the uncommon EGFR mutation in the training cohort (area under the curve, AUC = 0.802; 95% confidence interval, CI: 0.736-0.858) and was verified in the validation cohort (AUC = 0.791, 95% CI: 0.642-0.899). The integrated model combined radiomics signature with clinicopathological independent predictors exhibited an incremental performance compared with the radiomics signature or the clinicopathological model. A nomogram based on the integrated model was developed and showed good calibration (Hosmer-Lemeshow test, P = 0.92 in the training cohort and 0.608 in the validation cohort) and discrimination capacity (AUC of 0.816 in the training cohort and 0.795 in the validation cohort). CONCLUSION: Radiomics signature combined with the clinicopathological features can predict uncommon EGFR mutation in NSCLC patients.

6.
Front Oncol ; 11: 658138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937070

RESUMO

OBJECTIVES: To investigate the value of imaging in predicting the growth rate of early lung adenocarcinoma. METHODS: From January 2012 to June 2018, 402 patients with pathology-confirmed lung adenocarcinoma who had two or more thin-layer CT follow-up images were retrospectively analyzed, involving 407 nodules. Two complete preoperative CT images and complete clinical data were evaluated. Training and validation sets were randomly assigned according to an 8:2 ratio. All cases were divided into fast-growing and slow-growing groups. Researchers extracted 1218 radiomics features from each volumetric region of interest (VOI). Then, radiomics features were selected by repeatability analysis and Analysis of Variance (ANOVA); Based on the Univariate and multivariate analyses, the significant radiographic features is selected in training set. A decision tree algorithm was conducted to establish the radiographic model, radiomics model and the combined radiographic-radiomics model. Model performance was assessed by the area under the curve (AUC) obtained by receiver operating characteristic (ROC) analysis. RESULTS: Sixty-two radiomics features and one radiographic features were selected for predicting the growth rate of pulmonary nodules. The combined radiographic-radiomics model (AUC 0.78) performed better than the radiographic model (0.727) and the radiomics model (0.710) in the validation set. CONCLUSIONS: The model has good clinical application value and development prospects to predict the growth rate of early lung adenocarcinoma through the combined radiographic-radiomics model.

7.
Sci Rep ; 11(1): 3633, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574448

RESUMO

Controversy and challenges remain regarding the cognition of lung adenocarcinomas presented as subcentimeter ground glass nodules (GGNs). Postoperative lymphatic involvement or intrapulmonary metastasis is found in approximately 15% to 20% of these cases. This study aimed to develop and validate a radiomics signature to identify the invasiveness of lung adenocarcinoma appearing as subcentimeter ground glass nodules. We retrospectively enrolled 318 subcentimeter GGNs with histopathology-confirmed adenocarcinomas in situ (AIS), minimally invasive adenocarcinomas (MIA) and invasive adenocarcinomas (IAC). The radiomics features were extracted from manual segmentation based on contrast-enhanced CT (CECT) and non-contrast enhanced CT (NCECT) images after imaging preprocessing. The Lasso algorithm was applied to construct radiomics signatures. The predictive performance of radiomics models was evaluated by receiver operating characteristic (ROC) analysis. A radiographic-radiomics combined nomogram was developed to evaluate its clinical utility. The radiomics signature on CECT (AUC: 0.896 [95% CI 0.815-0.977]) performed better than the radiomics signature on NCECT data (AUC: 0.851[95% CI 0.712-0.989]) in the validation set. An individualized prediction nomogram was developed using radiomics model on CECT and radiographic model including type, shape and vascular change. The C index of the nomogram was 0.915 in the training set and 0.881 in the validation set, demonstrating good discrimination. Decision curve analysis (DCA) revealed that the proposed model was clinically useful. The radiomics signature built on CECT could provide additional benefit to promote the preoperative prediction of invasiveness in patients with subcentimeter lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Meios de Contraste/química , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X , Adenocarcinoma de Pulmão/diagnóstico , Calibragem , Tomada de Decisão Clínica , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Nomogramas , Curva ROC , Reprodutibilidade dos Testes
8.
EBioMedicine ; 62: 103106, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33186809

RESUMO

BACKGROUND: Diagnosis of rib fractures plays an important role in identifying trauma severity. However, quickly and precisely identifying the rib fractures in a large number of CT images with increasing number of patients is a tough task, which is also subject to the qualification of radiologist. We aim at a clinically applicable automatic system for rib fracture detection and segmentation from CT scans. METHODS: A total of 7,473 annotated traumatic rib fractures from 900 patients in a single center were enrolled into our dataset, named RibFrac Dataset, which were annotated with a human-in-the-loop labeling procedure. We developed a deep learning model, named FracNet, to detect and segment rib fractures. 720, 60 and 120 patients were randomly split as training cohort, tuning cohort and test cohort, respectively. Free-Response ROC (FROC) analysis was used to evaluate the sensitivity and false positives of the detection performance, and Intersection-over-Union (IoU) and Dice Coefficient (Dice) were used to evaluate the segmentation performance of predicted rib fractures. Observer studies, including independent human-only study and human-collaboration study, were used to benchmark the FracNet with human performance and evaluate its clinical applicability. A annotated subset of RibFrac Dataset, including 420 for training, 60 for tuning and 120 for test, as well as our code for model training and evaluation, was open to research community to facilitate both clinical and engineering research. FINDINGS: Our method achieved a detection sensitivity of 92.9% with 5.27 false positives per scan and a segmentation Dice of 71.5%on the test cohort. Human experts achieved much lower false positives per scan, while underperforming the deep neural networks in terms of detection sensitivities with longer time in diagnosis. With human-computer collobration, human experts achieved higher detection sensitivities than human-only or computer-only diagnosis. INTERPRETATION: The proposed FracNet provided increasing detection sensitivity of rib fractures with significantly decreased clinical time consumed, which established a clinically applicable method to assist the radiologist in clinical practice. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. The funding sources played no role in the study design; collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication .


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Fraturas das Costelas/diagnóstico por imagem , Software , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Redes Neurais de Computação , Curva ROC , Reprodutibilidade dos Testes , Fraturas das Costelas/etiologia , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas
9.
Front Oncol ; 9: 1485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993370

RESUMO

Purpose: Up to 50% of Asian patients with NSCLC have EGFR gene mutations, indicating that selecting eligible patients for EGFR-TKIs treatments is clinically important. The aim of the study is to develop and validate radiomics-based nomograms, integrating radiomics, CT features and clinical characteristics, to non-invasively predict EGFR mutation status and subtypes. Materials and Methods: We included 637 patients with lung adenocarcinomas, who performed the EGFR mutations analysis in the current study. The whole dataset was randomly split into a training dataset (n = 322) and validation dataset (n = 315). A sub-dataset of EGFR-mutant lesions (EGFR mutation in exon 19 and in exon 21) was used to explore the capability of radiomic features for predicting EGFR mutation subtypes. Four hundred seventy-five radiomic features were extracted and a radiomics sore (R-score) was constructed by using the least absolute shrinkage and selection operator (LASSO) regression in the training dataset. A radiomics-based nomogram, incorporating clinical characteristics, CT features and R-score was developed in the training dataset and evaluated in the validation dataset. Results: The constructed R-scores achieved promising performance on predicting EGFR mutation status and subtypes, with AUCs of 0.694 and 0.708 in two validation datasets, respectively. Moreover, the constructed radiomics-based nomograms excelled the R-scores, clinical, CT features alone in terms of predicting EGFR mutation status and subtypes, with AUCs of 0.734 and 0.757 in two validation datasets, respectively. Conclusions: Radiomics-based nomogram, incorporating clinical characteristics, CT features and radiomic features, can non-invasively and efficiently predict the EGFR mutation status and thus potentially fulfill the ultimate purpose of precision medicine. The methodology is a possible promising strategy to predict EGFR mutation subtypes, providing the support of clinical treatment scenario.

10.
Sci China Life Sci ; 53(9): 1142-51, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21104375

RESUMO

Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (≥5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7% ± 2% S.E.) were distinct from those at the alpine (23% ± 6%) and subnival (21% ± 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.


Assuntos
Altitude , Biomassa , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Plantas/metabolismo , Adaptação Biológica , China , Ecossistema , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA