Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7264-7286, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38470428

RESUMO

The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Humanos , Tecnologia sem Fio , Impressão
2.
Nat Commun ; 15(1): 887, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291087

RESUMO

Textile-based wearable electronics have attracted intensive research interest due to their excellent flexibility and breathability inherent in the unique three-dimensional porous structures. However, one of the challenges lies in achieving highly conductive patterns with high precision and robustness without sacrificing the wearing comfort. Herein, we developed a universal and robust in-textile photolithography strategy for precise and uniform metal patterning on porous textile architectures. The as-fabricated metal patterns realized a high precision of sub-100 µm with desirable mechanical stability, washability, and permeability. Moreover, such controllable coating permeated inside the textile scaffold contributes to the significant performance enhancement of miniaturized devices and electronics integration through both sides of the textiles. As a proof-of-concept, a fully integrated in-textiles system for multiplexed sweat sensing was demonstrated. The proposed method opens up new possibilities for constructing multifunctional textile-based flexible electronics with reliable performance and wearing comfort.

3.
Sci Adv ; 9(45): eadj2763, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948514

RESUMO

Textile bioelectronics that allow comfortable epidermal contact hold great promise in noninvasive biosensing. However, their applications are limited mainly because of the large intrinsic electrical resistance and low compatibility for electronics integration. We report an integrated wristband that consists of multifunctional modules in a single piece of textile to realize wireless epidermal biosensing. The in-textile metallic patterning and reliable interconnect encapsulation contribute to the excellent electrical conductivity, mechanical robustness, and waterproofness that are competitive with conventional flexible devices. Moreover, the well-maintained porous textile architectures deliver air permeability of 79 mm s-1 and moisture permeability of 270 g m-2 day-1, which are more than one order of magnitude higher than medical tapes, thus ensuring superior wearing comfort. The integrated in-textile wristband performed continuous sweat potassium monitoring in the range of 0.3 to 40 mM with long-term stability, demonstrating its great potential for wearable fitness monitoring and point-of-care testing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Epiderme , Suor , Têxteis
4.
Dongwuxue Yanjiu ; 32(4): 456-60, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21842543

RESUMO

We recorded and described the calls and acoustic characteristics of the male tiger frog, Hoplobatrachus rugulosus, in an artificial pond during mating season. Spectral and temporal call parameters, along with call intensity were analyzed. Three harmonics were distinguishable from the spectrogram. Four patterns of dominant frequency were found in calls produced late at night, i.e, 3 patterns in the first harmonic (located in 500 Hz section, 700 Hz section, and 800 Hz section respectively) and 1 in the second harmonic (located in 1 800 Hz section). Call duration, call duty cycle, call intensity, and pulse rate were highly variable among different patterns of dominant frequency. These call properties could provide valuable evidence for further ecological study of this species.


Assuntos
Ranidae/fisiologia , Vocalização Animal , Animais , Cruzamento , Feminino , Masculino , Estações do Ano , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA