Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 613(7945): 759-766, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631611

RESUMO

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Assuntos
Fosfoproteínas , Proteínas Serina-Treonina Quinases , Proteoma , Serina , Treonina , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Proteoma/química , Proteoma/metabolismo , Conjuntos de Dados como Assunto , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Linhagem Celular , Fosfosserina/metabolismo , Fosfotreonina/metabolismo
2.
Nature ; 604(7905): 354-361, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355015

RESUMO

Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Animais Geneticamente Modificados , Carcinogênese/genética , , Mãos , Humanos , Melanoma/patologia , Unhas , Oncogenes/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcrição Gênica , Peixe-Zebra/genética , Melanoma Maligno Cutâneo
3.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727621

RESUMO

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Assuntos
Autofagia/fisiologia , Jejum/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Autofagossomos/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/fisiologia
4.
J Biol Chem ; 291(17): 9119-32, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26893378

RESUMO

Tissue transglutaminase (tTG) is an acyltransferase/GTP-binding protein that contributes to the development of various diseases. In human cancer cells, tTG activates signaling pathways that promote cell growth and survival, whereas in other disorders (i.e. neurodegeneration), overexpression of tTG enhances cell death. Therefore, it is important to understand how tTG is differentially regulated and functioning to promote diametrically distinct cellular outcomes. Previous structural studies revealed that tTG adopts either a nucleotide-bound closed conformation or a transamidation-competent open conformation. Here we provide evidence showing that these different conformational states determine whether tTG promotes, or is detrimental to, cell survival, with the open conformation of the protein being responsible for inducing cell death. First, we demonstrate that a nucleotide binding-defective form of tTG, which has previously been shown to induce cell death, assumes an open conformation in solution as assessed by an enhanced sensitivity to trypsin digestion and by small angle x-ray scattering (SAXS) analysis. We next identify two pairs of intramolecular hydrogen bonds that, based on existing x-ray structures, are predicted to form between the most C-terminal ß-barrel domain and the catalytic core domain of tTG. By disrupting these hydrogen bonds, we are able to generate forms of tTG that constitutively assume an open conformation and induce apoptosis. These findings provide important insights into how tTG participates in the pathogenesis of neurodegenerative diseases, particularly with regard to the actions of a C-terminal truncated form of tTG (TG-Short) that has been linked to such disorders and induces apoptosis by assuming an open-like conformation.


Assuntos
Apoptose , Proteínas de Ligação ao GTP , Doenças Neurodegenerativas , Transglutaminases , Animais , Sobrevivência Celular , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transglutaminases/química , Transglutaminases/genética , Transglutaminases/metabolismo
5.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229155

RESUMO

Keratinocytes, the dominant cell type in the melanoma microenvironment during tumor initiation, exhibit diverse effects on melanoma progression. Using a zebrafish model of melanoma and human cell co-cultures, we observed that keratinocytes undergo an Epithelial-Mesenchymal Transition (EMT)-like transformation in the presence of melanoma, reminiscent of their behavior during wound healing. Surprisingly, overexpression of the EMT transcription factor Twist in keratinocytes led to improved overall survival in zebrafish melanoma models, despite no change in tumor initiation rates. This survival benefit was attributed to reduced melanoma invasion, as confirmed by human cell co-culture assays. Single-cell RNA-sequencing revealed a unique melanoma cell cluster in the Twist-overexpressing condition, exhibiting a more differentiated, less invasive phenotype. Further analysis nominated homotypic jam3b-jam3b and pgrn-sort1a interactions between Twist-overexpressing keratinocytes and melanoma cells as potential mediators of the invasive restraint. Our findings suggest that EMT in the tumor microenvironment (TME) may limit melanoma invasion through altered cell-cell interactions.

6.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586016

RESUMO

Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.

7.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38562693

RESUMO

The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39479752

RESUMO

Lipid droplets are fat storage organelles composed of a protein envelope and lipid-rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid-mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.

9.
Dis Model Mech ; 16(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472402

RESUMO

Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.


Assuntos
Melanoma , Peixe-Zebra , Animais , Feminino , Masculino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Melanoma/genética , Melanoma/patologia , Mutação/genética , Obesidade/complicações , Obesidade/genética , Dieta
10.
Nat Commun ; 14(1): 3192, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268606

RESUMO

Melanoma exhibits numerous transcriptional cell states including neural crest-like cells as well as pigmented melanocytic cells. How these different cell states relate to distinct tumorigenic phenotypes remains unclear. Here, we use a zebrafish melanoma model to identify a transcriptional program linking the melanocytic cell state to a dependence on lipid droplets, the specialized organelle responsible for lipid storage. Single-cell RNA-sequencing of these tumors show a concordance between genes regulating pigmentation and those involved in lipid and oxidative metabolism. This state is conserved across human melanoma cell lines and patient tumors. This melanocytic state demonstrates increased fatty acid uptake, an increased number of lipid droplets, and dependence upon fatty acid oxidative metabolism. Genetic and pharmacologic suppression of lipid droplet production is sufficient to disrupt cell cycle progression and slow melanoma growth in vivo. Because the melanocytic cell state is linked to poor outcomes in patients, these data indicate a metabolic vulnerability in melanoma that depends on the lipid droplet organelle.


Assuntos
Gotículas Lipídicas , Melanoma , Animais , Humanos , Gotículas Lipídicas/metabolismo , Peixe-Zebra/genética , Melanoma/patologia , Melanócitos/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética
11.
Cancer Discov ; 13(1): 194-215, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36259947

RESUMO

In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE: We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Melanoma , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Recidiva Local de Neoplasia/genética , Melanoma/patologia , Perfilação da Expressão Gênica , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica
12.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060450

RESUMO

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Assuntos
Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL , Masculino , Feminino , Epinefrina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Deleção de Genes , Colforsina/farmacologia , Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética
13.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463618

RESUMO

Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss-of-function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Complexo de Inativação Induzido por RNA/genética , Animais , Feminino , Homeostase , Camundongos , Camundongos Transgênicos , Peptídeos/metabolismo , Gravidez , Regeneração/genética , Transgenes
14.
Science ; 373(6559): eabc1048, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516843

RESUMO

Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cell­derived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Cromatina/metabolismo , Melanoma/genética , Melanoma/patologia , Crista Neural/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Neoplasias Experimentais , Células-Tronco Neoplásicas/patologia , Crista Neural/metabolismo , Células-Tronco Pluripotentes/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcrição Gênica , Peixe-Zebra
15.
Neural Regen Res ; 20(8): 2133-2152, 2025 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39248155

RESUMO

The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA