Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biomacromolecules ; 23(7): 2914-2929, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35735135

RESUMO

Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.


Assuntos
Hidrogéis , Doenças Retinianas , Bevacizumab/química , Preparações de Ação Retardada/química , Humanos , Ácido Hialurônico/química , Hidrogéis/química
2.
Biomacromolecules ; 21(1): 73-88, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31500418

RESUMO

Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.


Assuntos
DNA/química , Plasmídeos/genética , Polímeros/síntese química , Resinas Acrílicas/química , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polimerização , Polímeros/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
3.
Mol Pharm ; 15(9): 3786-3795, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063364

RESUMO

The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.


Assuntos
Micelas , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Vitamina K/química , Vitamina K/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Receptores Depuradores Classe B/metabolismo
4.
Pharm Res ; 35(11): 226, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280277

RESUMO

PURPOSE: Filgrastim, a recombinant human granulocyte-colony stimulating factor, is widely used to treat congenital and acquired neutropenia. Following patent expiration of the innovator filgrastim product, biosimilar filgrastim products have been approved in the EU and shown to be comparable with the innovator with respect to quality, safety and efficacy. In less regulated markets, copy filgrastim products are available but data about their quality are scarce. In the present study, we provide a head-to-head comparative study on the quality of biosimilar and copy filgrastim products. METHODS: Innovator filgrastim product, Neupogen®, two EU-licensed biosimilars, Zarzio® and Tevagrastim®, and two copy filgrastim products, Biocilin® and PDgrastim®, were subjected to peptide mapping, circular dichroism spectroscopy, fluorescence spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis, high performance size-exclusion chromatography, reversed-phase ultra-performance liquid chromatography, endotoxin test, flow imaging microscopy and in vitro potency assay. RESULTS: Zarzio® and Tevagrastim® have comparable quality to Neupogen®, while Biocilin® showed a significantly lower and PDgrastim® a higher specific activity. Moreover, PDgrastim® showed a higher level of impurities and a lower thermo stability than the other products. CONCLUSIONS: Except for the deviating specific activities of the two copy filgrastim products, we found no substantial differences in product quality between the filgrastim products studied.


Assuntos
Medicamentos Biossimilares/química , Filgrastim/química , Fármacos Hematológicos/química , Medicamentos Biossimilares/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Contaminação de Medicamentos , Estabilidade de Medicamentos , Filgrastim/farmacologia , Fármacos Hematológicos/farmacologia , Humanos , Estabilidade Proteica
5.
Drug Metab Dispos ; 41(8): 1494-504, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674609

RESUMO

Because cancer is often treated with combination therapy, unexpected pharmacological effects can occur because of drug-drug interactions. Several drugs are able to cause upregulation or downregulation of drug transporters or cytochrome P450 enzymes, particularly CYP3A4. Induction of CYP3A4 may result in decreased plasma levels and therapeutic efficacy of anticancer drugs. Since the pregnane X receptor (PXR) is one of the major transcriptional regulators of CYP3A4, PXR antagonists can possibly prevent CYP3A4 induction. Currently, a limited number of PXR antagonists are available. Some of these antagonists, such as sulphoraphane and coumestrol, belong to the so-called complementary and alternative medicines (CAM). Therefore, the aim was to determine the potential of selected CAM (ß-carotene, Echinacea purpurea, garlic, Ginkgo biloba, ginseng, grape seed, green tea, milk thistle, saw palmetto, valerian, St. John's Wort, and vitamins B6, B12, and C) to inhibit PXR-mediated CYP3A4 induction at the transcriptional level, using a reporter gene assay and a real-time polymerase chain reaction assay in LS180 colon adenocarcinoma cells. Furthermore, computational molecular docking and a LanthaScreen time-resolved fluorescence resonance energy transfer (TR-FRET) PXR competitive binding assay were performed to explore whether the inhibiting CAM components interact with PXR. The results demonstrated that milk thistle is a strong inhibitor of PXR-mediated CYP3A4 induction. The components of milk thistle responsible for this effect were identified as silybin and isosilybin. Furthermore, computational molecular docking revealed a strong interaction between both silybin and isosilybin and PXR, which was confirmed in the TR-FRET PXR assay. In conclusion, silybin and isosilybin might be suitable candidates to design potent PXR antagonists to prevent drug-drug interactions via CYP3A4 in cancer patients.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Receptores de Esteroides/antagonistas & inibidores , Silimarina/análogos & derivados , Ligação Competitiva , Linhagem Celular Tumoral , Terapias Complementares , Citocromo P-450 CYP3A/biossíntese , Indução Enzimática , Humanos , Silybum marianum/química , Simulação de Acoplamento Molecular , Receptor de Pregnano X , Silibina , Silimarina/farmacologia
6.
Eur J Pharm Biopharm ; 158: 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33152482

RESUMO

Active self-encapsulation (ASE) is a recently developed post-loading method based on absorption of (positively charged) proteins in microporous PLGA microspheres loaded with negatively charged polysaccharides (trapping agents). The aim of this study was to investigate ASE for simultaneous loading and controlled release of multiple growth factors. For this purpose, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and insulin-like growth factor (IGF) were loaded in microspheres containing high molecular weight dextran sulfate (HDS) as trapping agent; loading was performed in a concentrated growth factor solution of low ionic strength and of pH 5 under conditions at which the proteins are positively charged. Subsequent pore closure was induced by incubation of the growth factor-loaded microspheres at 42.5 °C, i.e. above the Tg of (hydrated) PLGA (~30 °C). A 1:1:1 combination of VEGF, FGF and IGF was loaded with high loading (4.3%) and loading efficiency (91%). The in vitro release kinetics and bioactivity of loaded growth factors were studied for 4 weeks using ELISA and an endothelial cell proliferation assay, respectively. While IGF was released quickly, VEGF and FGF were continuously released for 4 weeks in their bioactive form, whereby a growth factor combination had a synergistic angiogenic effect. Therefore, ASE is a suitable method for co-loading growth factors which can provide sustained release profiles of bioactive growth factors, which is attractive for vascularization of biomaterial implants.


Assuntos
Indutores da Angiogênese/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Portadores de Fármacos/química , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Indutores da Angiogênese/farmacocinética , Materiais Biocompatíveis/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/farmacocinética , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Somatomedinas/administração & dosagem , Somatomedinas/farmacocinética , Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Fatores de Crescimento do Endotélio Vascular/farmacocinética
7.
J Pharm Sci ; 109(1): 863-870, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654660

RESUMO

Pancreatic islet transplantation is a promising advanced therapy that has been used to treat patients suffering from diabetes type 1. Traditionally, pancreatic islets are infused via the portal vein, which is subsequently intended to engraft in the liver. Severe immunosuppressive treatments are necessary, however, to prevent rejection of the transplanted islets. Novel approaches therefore have focused on encapsulation of the islets in biomaterial implants which can protect the islets and offer an organ-like environment. Vascularization of the device's surface is a prerequisite for the survival and proper functioning of transplanted pancreatic islets. We are pursuing a prevascularization strategy by incorporation of vascular endothelial growth factor (VEGF)-loaded microspheres in 3-dimensional printed poly(dimethylsiloxane)-based devices prior to their prospective loading with transplanted cells. Microspheres (~50 µm) were based on poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymers and were loaded with 10 µg VEGF/mg microspheres, and subsequently dispersed in a hyaluronic acid carrier liquid. In vitro release studies at 37°C demonstrated continuous release of fully bioactive VEGF for 4 weeks. In conclusion, our results demonstrate that incorporation of VEGF-releasing microspheres ensures adequate release of VEGF for a time window of 4 weeks, which is attractive in view of the vascularization of artificial pancreas implants.


Assuntos
Indutores da Angiogênese/química , Dimetilpolisiloxanos/química , Portadores de Fármacos , Poliésteres/química , Polietilenoglicóis/química , Impressão Tridimensional , Fator A de Crescimento do Endotélio Vascular/química , Indutores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Composição de Medicamentos , Implantes de Medicamento , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Microesferas , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Pharmaceutics ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283871

RESUMO

To improve the in vivo stability of poly(-caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles and cargo retention by π-π stacking interactions, pendant aromatic rings were introduced by copolymerization of -caprolactone with benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (TMC-Bz). It was shown that the incorporation of aromatic rings yielded smaller micelles (18-30 nm) with better colloidal stability in PBS than micelles without aromatic groups. The circulation time of i.v. injected micelles containing multiple pendant aromatic groups was longer (t½-α: ~0.7 h; t½-ß: 2.9 h) than that of micelles with a single terminal aromatic group (t½ < 0.3 h). In addition, the in vitro partitioning of the encapsulated photosensitizer (meta-tetra(hydroxyphenyl)chlorin, mTHPC) between micelles and human plasma was favored towards micelles for those that contained the pendant aromatic groups. However, this was not sufficient to fully retain mTHPC in the micelles in vivo, as indicated by similar biodistribution patterns of micellar mTHPC compared to free mTHPC, and unequal biodistribution patterns of mTHPC and the host micelles. Our study points out that more detailed in vitro methods are necessary to more reliably predict in vivo outcomes. Furthermore, additional measures beyond π-π stacking are needed to stably incorporate mTHPC in micelles in order to benefit from the use of micelles as targeted delivery systems.

9.
ACS Omega ; 4(7): 11481-11492, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460253

RESUMO

Vascular endothelial growth factor (VEGF) is the major regulating factor for the formation of new blood vessels, also known as angiogenesis. VEGF is often incorporated in synthetic scaffolds to promote vascularization and to enhance the survival of cells that have been seeded in these devices. Such applications require sustained local delivery of VEGF of around 4 weeks for stable blood vessel formation. Most delivery systems for VEGF only provide short-term release for a couple of days, followed by a release phase with very low VEGF release. We now have developed VEGF-loaded polymeric microspheres that provide sustained release of bioactive VEGF for 4 weeks. Blends of two swellable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)-b-poly(l-lactide) ([PCL-PEG-PCL]-b-[PLLA])-based multiblock copolymers with different PEG content and PEG molecular weight were used to prepare the microspheres. Loading of the microspheres was established by a solvent evaporation-based membrane emulsification method. The resulting VEGF-loaded microspheres had average sizes of 40-50 µm and a narrow size distribution. Optimized formulations of a 50:50 blend of the two multiblock copolymers had an average VEGF loading of 0.79 ± 0.09%, representing a high average VEGF loading efficiency of 78 ± 16%. These microspheres released VEGF continuously over 4 weeks in phosphate-buffered saline pH 7.4 at 37 °C. This release profile was preserved after repeated and long-term storage at -20 °C for up to 9 months, thereby demonstrating excellent storage stability. VEGF release was governed by diffusion through the water-filled polymer matrix, depending on PEG molecular weight and PEG content of the polymers. The bioactivity of the released VEGF was retained within the experimental error in the 4-week release window, as demonstrated using a human umbilical vein endothelial cells proliferation assay. Thus, the microspheres prepared in this study are suitable for embedment in polymeric scaffolds with the aim of promoting their functional vascularization.

10.
J Pharm Pharmacol ; 66(9): 1339-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24730468

RESUMO

OBJECTIVES: The aim of this study is to establish the inhibitory effects of 14 commonly used complementary and alternative medicines (CAM) on the metabolism of cytochrome P450 2C9 (CYP2C9) substrates 7-methoxy-4-trifluoromethyl coumarine (MFC) and tolbutamide. CYP2C9 is important for the metabolism of numerous drugs and inhibition of this enzyme by CAM could result in elevated plasma levels of drugs that are CYP2C9 substrates. Especially for anticancer drugs, which have a narrow therapeutic window, small changes in their plasma levels could easily result in clinically relevant toxicities. METHODS: The effects of CAM on CYP2C9-mediated metabolism of MFC were assessed in Supersomes, using the fluorometric CYP2C9 inhibition assay. In human liver microsomes (HLM) the inhibition of CYP2C9-mediated metabolism of tolbutamide was determined, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). KEY FINDINGS: The results indicated milk thistle as the most potent CYP2C9 inhibitor. For milk thistle, silybin (main constituent of milk thistle) was mainly responsible for the inhibition of CY2C9. CONCLUSIONS: Milk thistle and green tea were confirmed as potent inhibitors of CYP2C9-mediated metabolism of multiple substrates in vitro. Clinical studies with milk thistle are recommended to establish the clinical relevance of the demonstrated CYP2C9 inhibition.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Camellia sinensis , Cumarínicos/metabolismo , Interações Ervas-Drogas , Extratos Vegetais/farmacologia , Silybum marianum/química , Tolbutamida/metabolismo , Terapias Complementares , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Silibina , Silimarina/farmacologia
11.
J Pharm Pharmacol ; 66(6): 865-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24392691

RESUMO

OBJECTIVE: Concomitant use of complementary and alternative medicine (CAM) and anticancer drugs can affect the pharmacokinetics of anticancer drugs by inhibiting the metabolizing enzyme cytochrome P450 3A4 (CYP3A4) (EC 1.14.13.157). Several in vitro studies determined whether CAM can inhibit CYP3A4, but these studies revealed contradictory results. A plausible explanation for these conflicting results is the use only of a single model CYP3A4 substrate in each study. Therefore, the objective was to determine the potential of selected CAM (ß-carotene, Echinacea, garlic, Ginkgo biloba, ginseng, grape seed extract, green tea extract, milk thistle, saw palmetto, valerian, vitamin B6, B12 and C) to inhibit CYP3A4-mediated metabolism of different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin (BFC), midazolam and docetaxel. The effect of CAM on CYP3A4-mediated metabolism of an anticancer drug has never been determined before in vitro, which makes this study unique. The oncolytic CYP3A4 substrate docetaxel was used to establish the predictive value of the model substrates for pharmacokinetic interactions between CAM and anticancer drugs in vitro, and to more closely predict these interactions in vivo. METHODS: The inhibition of CYP3A4-mediated metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin (BFC) by CAM was assessed in Supersomes, using the fluorometric CYP3A4 inhibition assay. In human liver microsomes (HLM) the inhibition of CYP3A4-mediated metabolism of midazolam and docetaxel was determined, using liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). KEY FINDINGS: The results confirmed grape seed and green tea as potent inhibitors and milk thistle as moderate inhibitor of CYP3A4-mediated metabolism of BFC, midazolam and docetaxel. CONCLUSION: Clinical studies are required to determine the clinical relevance of the determined CYP3A4 inhibition by grape seed, green tea and milk thistle.


Assuntos
Terapias Complementares , Cumarínicos/metabolismo , Citocromo P-450 CYP3A/fisiologia , Midazolam/metabolismo , Silybum marianum , Taxoides/metabolismo , Docetaxel , Ginkgo biloba , Extrato de Sementes de Uva/farmacologia , Humanos , Microssomos Hepáticos/metabolismo , Chá
12.
Toxicol Lett ; 203(1): 82-91, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21402137

RESUMO

Metabolism of MDMA (3,4-methylenedioxymethamphetamine, Ecstasy) by the major hepatic drug-metabolizing enzyme cytochrome P450 3A (CYP3A), plays an important role in MDMA-induced liver toxicity. In the present study, we investigated interactions between MDMA and several therapeutic and recreational drugs on CYP3A and its regulator pregnane X receptor (PXR), using a human PXR-mediated CYP3A4-reporter gene assay, rat primary hepatocytes and microsomes. MDMA significantly inhibited hPXR-mediated CYP3A4-reporter gene expression induced by the human PXR activator rifampicin (IC50 1.26 ± 0.36 mM) or the therapeutic drugs paroxetine, fluoxetine, clozapine, diazepam and risperidone. All these drugs concentration-dependently inhibited CYP3A activity in rat liver microsomes, but in combination with MDMA this inhibition became more efficient for clozapine and risperidone. In rat primary hepatocytes that were pretreated with or without the rodent PXR activator pregnenolone 16alpha-carbonitrile (PCN), MDMA inhibited CYP3A catalytic activity with IC50 values of 0.06 ± 0.12 and 0.09 ± 0.13 mM MDMA, respectively. This decrease appeared to be due to decreased activation of PXR and subsequent decreased CYP3A gene expression, and catalytic inhibition of CYP3A activity. These data suggest that in situations of repeated MDMA use in combination with other (therapeutic) drugs, adverse drug-drug interactions through interactions with PXR and/or CYP3A cannot be excluded.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Alucinógenos/farmacologia , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Receptores de Esteroides/antagonistas & inibidores , Animais , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Receptor de Pregnano X , Interferência de RNA , Ratos , Ratos Wistar , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA