Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(41): 12755-9, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27629989

RESUMO

Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Herein, we describe the preparation of (NBu4 )Am[S2 P((t) Bu2 C12 H6 )]4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd(III) ) and an isoelectronic one (Eu(III) ). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu(III) and Nd(III) complexes revealed subtle electronic differences between the complexes of Am(III) and the lanthanides.

2.
Nucl Med Biol ; 49: 24-29, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28288384

RESUMO

INTRODUCTION: Rhenium-186g (t1/2 = 3.72 d) is a ß- emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ)186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a higher specific activity, allowing it to be used more broadly for targeted radiotherapy applications. This targets the unmet clinical need for more efficient radiotherapeutics. METHODS: A target consisting of highly enriched, pressed 186WO3 was irradiated with protons at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF) to evaluate 186gRe product yield and quality. LANL-IPF was operated in a dedicated nominal 40 MeV mode. Alkaline dissolution followed by anion exchange chromatography was used to isolate 186gRe from the target material. Phantom and radiolabeling studies were conducted with the produced 186gRe activity. RESULTS: A 186gRe batch yield of 1.38 ± 0.09 MBq/µAh or 384.9 ± 27.3 MBq/C was obtained after 16.5 h in a 205 µA average/230µA maximum current proton beam. The chemical recovery yield was 93% and radiolabeling was achieved with efficiencies ranging from 60-80%. True specific activity of 186gRe at EOB was determined via ICP-AES and amounted to 0.788 ± 0.089 GBq/µg (0.146 ± 0.017 GBq/nmol), which is approximately seven times higher than the product obtained from neutron capture in a reactor. Phantom studies show similar imaging quality to the gold standard 99mTc. CONCLUSIONS: We report a preliminary study of the large-scale production and novel anion exchange based chemical recovery of high specific activity 186gRe from enriched 186WO3 targets in a high-intensity proton beam with exceptional chemical recovery and radiochemical purity.


Assuntos
Neoplasias/radioterapia , Óxidos/química , Terapia com Prótons/métodos , Radioquímica/métodos , Rênio/química , Rênio/uso terapêutico , Tungstênio/química , Marcação por Isótopo , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único
3.
Nucl Med Biol ; 42(5): 428-438, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25684650

RESUMO

INTRODUCTION: The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope (213)Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi(3+), however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. METHODS: The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L(py)), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyd)), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyr)), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L(pz)), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, (207)Bi (t(1/2)=32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi(3+) and the generator parent ion Ac(3+). RESULTS: In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi(3+) in the presence of the parent isotope Ac(3+). Among the four tested, L(py) was found to exhibit optimal Bi(3+)-binding kinetics and complex stability. L(py) complexes Bi(3+) more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi(3+) over Ac(3+). CONCLUSION: Taken together, these data implicate L(py) as a valuable chelating agent for the delivery of (213)Bi. Its selectivity for Bi(3+) and rapid and stable labeling properties warrant further investigation and biological studies.


Assuntos
Bismuto/química , Bismuto/uso terapêutico , Quelantes/química , Compostos Macrocíclicos/química , Nitrogênio/química , Radioisótopos , Actínio/química , Partículas alfa/uso terapêutico , Ligação Competitiva , Ácido Edético/química , Marcação por Isótopo , Cinética , Ligantes , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA