Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chemistry ; 28(28): e202200389, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35293643

RESUMO

We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.


Assuntos
Rotaxanos , Ânions/química , Cloretos/química , Halogênios , Ligação de Hidrogênio , Modelos Moleculares , Rotaxanos/química
2.
Org Biomol Chem ; 21(1): 132-139, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453203

RESUMO

Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.


Assuntos
Ácidos Graxos , Prótons , Ácidos Graxos/metabolismo , Carbamatos/farmacologia , Carbamatos/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa
3.
J Chem Phys ; 154(9): 095101, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685172

RESUMO

A coarse-grain model of the epithelial plasma membrane was developed from high-resolution lipidomic data and simulated using the MARTINI force field to characterize its biophysical properties. Plasmalogen lipids, Forssman glycosphingolipids, and hydroxylated Forssman glycosphingolipids and sphingomyelin were systematically added to determine their structural effects. Plasmalogen lipids have a minimal effect on the overall biophysical properties of the epithelial plasma membrane. In line with the hypothesized role of Forssman lipids in the epithelial apical membrane, the introduction of Forssman lipids initiates the formation of glycosphingolipid-rich nanoscale lipid domains, which also include phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL). This decreases the lateral diffusion in the extracellular leaflet, as well as the area per lipid of domain forming lipids, most notably PE. Finally, hydroxylation of the Forssman glycosphingolipids and sphingomyelin further modulates the lateral organization of the membrane. Through comparison to the previously studied average and neuronal plasma membranes, the impact of membrane lipid composition on membrane properties was characterized. Overall, this study furthers our understanding of the biophysical properties of complex membranes and the impact of lipid diversity in modulating membrane properties.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/citologia , Plasmalogênios/metabolismo , Esfingolipídeos/metabolismo , Difusão , Hidroxilação
4.
Biochemistry ; 59(33): 3010-3018, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786397

RESUMO

Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) Biophys. J. 113 (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.


Assuntos
Membrana Celular/química , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/química , Neurônios/ultraestrutura , Animais , Fenômenos Biofísicos , Membrana Celular/fisiologia , Colesterol/química , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Neurônios/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo
5.
ACS Infect Dis ; 9(4): 815-826, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920795

RESUMO

The Gram-negative pathogen Acinetobacter baumannii is a primary contributor to nosocomial multi-drug-resistant (MDR) infections. To combat the rise of MDR infections, novel features of A. baumannii need to be considered for the development of new treatment options. One such feature is the preferential scavenging of exogenous lipids, including host-derived polyunsaturated fatty acids (PUFAs), for membrane phospholipid synthesis. These alterations in membrane composition impact both the lipid chemistry and the membrane biophysical properties. In this work we examine how antimicrobial peptides (AMPs) interact with the inner membranes of A. baumannii in the presence and absence of polyunsaturated phospholipids. Using coarse-grained molecular dynamics simulations of complex A. baumannii inner membrane models derived from lipidomes of bacteria grown in the presence and absence of PUFAs, we examine the impact of the adsorption of four prototypical AMPs (CAMEL, LL-37, pexiganan, and magainin-2) on the membrane biophysical properties. Our simulations reveal that the impact of AMP adsorption on the membrane biophysical properties was dependent on both the membrane composition and the specific AMP involved. Both lipid headgroup charge and tail unsaturation played important roles in driving the interactions that occurred both within the membrane and between the membrane and AMPs. The changes to the membrane biophysical properties also showed a complex relationship with the AMP's physical properties, such as AMP charge, chain length, and charge-to-mass ratio. Cumulatively, this work highlights the importance of studying AMPs using a complex membrane environment and provides insights into the mechanistic action of AMPs in polyunsaturated lipid-rich bacterial membranes.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Lipídeos
6.
Biophys Rev ; 14(1): 145-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35251360

RESUMO

The proposition of a post-antimicrobial era is all the more realistic with the continued rise of antimicrobial resistance. The development of new antimicrobials is failing to counter the ever-increasing rates of bacterial antimicrobial resistance. This necessitates novel antimicrobials and drug targets. The bacterial cell membrane is an essential and highly conserved cellular component in bacteria and acts as the primary barrier for entry of antimicrobials into the cell. Although previously under-exploited as an antimicrobial target, the bacterial cell membrane is attractive for the development of novel antimicrobials due to its importance in pathogen viability. Bacterial cell membranes are diverse assemblies of macromolecules built around a central lipid bilayer core. This lipid bilayer governs the overall membrane biophysical properties and function of its membrane-embedded proteins. This mini-review will outline the mechanisms by which the bacterial membrane causes and controls resistance, with a focus on alterations in the membrane lipid composition, chemical modification of constituent lipids, and the efflux of antimicrobials by membrane-embedded efflux systems. Thorough insight into the interplay between membrane-active antimicrobials and lipid-mediated resistance is needed to enable the rational development of new antimicrobials. In particular, the union of computational approaches and experimental techniques for the development of innovative and efficacious membrane-active antimicrobials is explored.

7.
Biochim Biophys Acta Biomembr ; 1864(7): 183908, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276227

RESUMO

Exogenous polyunsaturated fatty acids (PUFAs) are readily incorporated into the synthesis pathways of A. baumannii membrane phospholipids, where they contribute to reduced bacterial fitness and increased antimicrobial susceptibility. Here we examine the impact of PUFA membrane modification on membrane organisation and biophysical properties using coarse grained MARTINI simulations of chemically representative membrane models developed from mass-spectrometry datasets of an untreated, arachidonic acid (AA) treated and docosahexaenoic acid (DHA) treated A. baumannii membranes. Enzymatic integration of AA or DHA into phospholipids of the A. baumannii membrane resulted in modulation of membrane biophysical properties. Membrane thickness decreased slightly following PUFA treatment, concomitant with changes in the lateral area per lipid of each lipid headgroup class. PUFA treatment resulted in a decrease in membrane ordering and an increase in lipid lateral diffusion. Changes in lateral membrane organisation were observed in the PUFA treated membranes, with a concurrent increase in ordered cardiolipin domains and disordered PUFA-containing domains. Notably, separation between ordered and disordered domains was enhanced and was more pronounced for DHA relative to AA, providing a possible mechanism for greater antimicrobial action of DHA relative to AA observed experimentally. Furthermore, the membrane active antimicrobial, pentamidine, preferentially adsorbs to cardiolipin domains of the A. baumannii model membranes. This interaction, and membrane penetration of pentamidine, was enhanced following PUFA treatment. Cumulatively, this work explores the wide-ranging effects of PUFA incorporation on the A. baumannii membrane and provides a molecular basis for bacterial inner membrane disruption by PUFAs.


Assuntos
Acinetobacter baumannii , Ácido Araquidônico , Cardiolipinas , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/metabolismo , Pentamidina , Fosfolipídeos/metabolismo
8.
Chem Asian J ; 17(6): e202200093, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35139260

RESUMO

There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic PdII cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2 : 3 : 3 combination of a tritopic ligand, PdII , and a selection of ditopic ligands of the correct size and geometry.


Assuntos
Paládio , Paládio/química
9.
Sci Adv ; 8(5): eabl7346, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119930

RESUMO

Protein cages are a common architectural motif used by living organisms to compartmentalize and control biochemical reactions. While engineered protein cages have featured in the construction of nanoreactors and synthetic organelles, relatively little is known about the underlying molecular parameters that govern stability and flux through their pores. In this work, we systematically designed 24 variants of the Thermotoga maritima encapsulin cage, featuring pores of different sizes and charges. Twelve pore variants were successfully assembled and purified, including eight designs with exceptional thermal stability. While negatively charged mutations were better tolerated, we were able to form stable assemblies covering a full range of pore sizes and charges, as observed in seven new cryo-EM structures at 2.5- to 3.6-Å resolution. Molecular dynamics simulations and stopped-flow experiments revealed the importance of considering both pore size and charge, together with flexibility and rate-determining steps, when designing protein cages for controlling molecular flux.

10.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362732

RESUMO

Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.

11.
mBio ; 12(3): e0107021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34134514

RESUMO

Acinetobacter baumannii is one of the world's most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A. baumannii membrane composition and its impact on resistance remains limited. In this study, we explored how the incorporation of host-derived polyunsaturated fatty acids (PUFAs) is associated with increased antibiotic susceptibility. Functional analyses of primary A. baumannii efflux systems indicated that AdeB-mediated antibiotic resistance was impacted by PUFA treatment. Molecular dynamics simulations of AdeB identified a specific morphological disruption of AdeB when positioned in the PUFA-enriched membrane. Collectively, we have shown that PUFAs can impact antibiotic efficacy via a vital relationship with antibiotic efflux pumps. Furthermore, this work has revealed that A. baumannii's unconditional desire for fatty acids may present a possible weakness in its multidrug resistance capacity. IMPORTANCE Antimicrobial resistance is an emerging global health crisis. Consequently, we have a critical need to prolong our current arsenal of antibiotics, in addition to the development of novel treatment options. Due to their relatively high abundance at the host-pathogen interface, PUFAs and other fatty acid species not commonly synthesized by A. baumannii may be actively acquired by A. baumannii during infection and change the biophysical properties of the membrane beyond that studied in standard laboratory culturing media. Our work illustrates how the membrane phospholipid composition impacts membrane protein function, which includes an important multidrug efflux system in extensively-drug-resistant A. baumannii. This work emphasizes the need to consider including host-derived fatty acids in in vitro analyses of A. baumannii. On a broader scope, this study presents new findings on the potential health benefits of PUFA in individuals at risk of contracting A. baumannii infections or those undergoing antibiotic treatment.


Assuntos
Acinetobacter baumannii/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana Transportadoras/química , Acinetobacter baumannii/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Ácidos Graxos Insaturados/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular
12.
J Chem Theory Comput ; 16(3): 1913-1923, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059108

RESUMO

Divalent metal cations are essential for many biological processes; however, accurately modeling divalent metal ions has proved a significant challenge for molecular dynamics force fields. Here we show that the choice of ion model influences the observed dynamics in PsaA, a metal binding protein from Streptococcus pneumoniae. We conduct extensive unbiased simulations and free energy calculations of PsaA bound to its cognate ligand Mn2+ and inhibitory ligand Zn2+ using three nonbonded ion models: a 12-6 model, a 12-6-4 model, and a multisite model. The observed coordination geometries and metal binding dynamics are sensitive to the choice of ion model, with the most dramatic differences observed in free energy calculations of ion release. We show that the conformational ensemble of Mn-bound PsaA is more similar to the crystallographic metal bound open state. This work extends the current model of PsaA metal binding and provides a framework for the rationalization of experimentally determined metal binding behavior. Our findings support the use of the 12-6-4 ion model for further simulations of divalent cation binding proteins.


Assuntos
Proteínas de Transporte/metabolismo , Cátions Bivalentes/metabolismo , Metais/química , Streptococcus pneumoniae/química , Humanos , Conformação Molecular
13.
Chem Sci ; 11(47): 12677-12685, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34094462

RESUMO

Respiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix. Previously described protonophores contain acidic groups that are part of delocalised π-systems that provide large surfaces for charge delocalisation and facilitate anion permeation across the MIM. Here we present a new class of protonophoric uncoupler based on aryl-urea substituted fatty acids in which an acidic group and a π-system are separated by a long alkyl chain. The aryl-urea group in these molecules acts as a synthetic anion receptor that forms intermolecular hydrogen bonds with the fatty acid carboxylate after deprotonation. Dispersal of the negative charge across the aryl-urea system produces lipophilic dimeric complexes that can permeate the MIM and facilitate repeated cycling. Substitution of the aryl-urea group with lipophilic electron withdrawing groups is critical to complex lipophilicity and uncoupling activity. The aryl-urea substituted fatty acids represent the first biological example of mitochondrial uncoupling mediated by the interaction of a fatty acid and an anion receptor moiety, via self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA