Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 89(5): 1809-1824, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36511247

RESUMO

PURPOSE: We investigated the correlation, reproducibility, and effect of white matter fiber orientation for three myelin-sensitive MRI techniques: magnetization transfer ratio (MTR), inhomogeneous magnetization transfer ratio (ihMTR), and gradient and spin echo-derived myelin water fraction (MWF). METHODS: We measured the three metrics in 17 white and three deep grey matter regions in 17 healthy adults at 3 T. RESULTS: We found a strong correlation between ihMTR and MTR (r = 0.70, p < 0.001) and ihMTR and MWF (r = 0.79, p < 0.001), and a weaker correlation between MTR and MWF (r = 0.54, p < 0.001). The dynamic range in white matter was greatest for MWF (2.0%-27.5%), followed by MTR (14.4%-23.2%) and then ihMTR (1.2%-5.4%). The average scan-rescan coefficient of variation for white matter regions was 0.6% MTR, 0.3% ihMTR, and 0.7% MWF in metric units; however, when adjusted by the dynamic range, these became 6.3%, 6.1% and 2.8%, respectively. All three metrics varied with fiber direction: MWF and ihMTR were lower in white matter fibers perpendicular to B0 by 6% and 1%, respectively, compared with those parallel, whereas MTR was lower by 0.5% at about 40°, with the highest values at 90°. However, separating the apparent orientation dependence by white matter region revealed large dissimilarities in the trends, suggesting that real differences in myelination between regions are confounding the apparent orientation dependence measured using this method. CONCLUSION: The strong correlation between ihMTR and MWF suggests that these techniques are measuring the same myelination; however, the larger dynamic range of MWF may provide more power to detect small differences in myelin.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Adulto , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Água , Biomarcadores
2.
NMR Biomed ; 36(6): e4808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35916067

RESUMO

Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Lipídeos de Membrana , Campos Magnéticos , Movimento (Física)
3.
NMR Biomed ; 36(8): e4936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36973767

RESUMO

Inversion pulses are commonly employed in MRI for T 1 -weighted contrast and relaxation measurements. In the brain, it is often assumed that adiabatic pulses saturate the nonaqueous magnetization. We investigated this assumption using solid-state NMR to monitor the nonaqueous signal directly following adiabatic inversion and compared this with signals following hard and soft inversion pulses. The effects of the different preparations on relaxation dynamics were explored. Inversion recovery experiments were performed on ex vivo bovine and porcine brains using 360-MHz (8.4 T) and 200-MHz (4.7 T) NMR spectrometers, respectively, using broadband rectangular, adiabatic, and sinc inversion pulses as well as a long rectangular saturation pulse. Analogous human brain MRI experiments were performed at 3 T using single-slice echo-planar imaging. Relaxation data were fitted by mono- and biexponential decay models. Further fitting analysis was performed using only two inversion delay times. Adiabatic and sinc inversion left much of the nonaqueous magnetization along B 0 and resulted in biexponential relaxation. Saturation of both aqueous and nonaqueous magnetization components led to effectively monoexponential T 1 relaxation. Typical adiabatic inversion pulses do not, as has been widely assumed, saturate the nonaqueous proton magnetization in white matter. Unequal magnetization states in aqueous and nonaqueous 1 H reservoirs prepared by soft and adiabatic pulses result in biexponential T 1 relaxation. Both pools must be prepared in the same magnetization state (e.g., saturated or inverted) in order to observe consistent monoexponential relaxation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Animais , Bovinos , Suínos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar
4.
Magn Reson Med ; 87(2): 915-931, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490909

RESUMO

PURPOSE: The decomposition of multi-exponential decay data into a T2 spectrum poses substantial challenges for conventional fitting algorithms, including non-negative least squares (NNLS). Based on a combination of the resolution limit constraint and machine learning neural network algorithm, a data-driven and highly tailorable analysis method named spectrum analysis for multiple exponentials via experimental condition oriented simulation (SAME-ECOS) was proposed. THEORY AND METHODS: The theory of SAME-ECOS was derived. Then, a paradigm was presented to demonstrate the SAME-ECOS workflow, consisting of a series of calculation, simulation, and model training operations. The performance of the trained SAME-ECOS model was evaluated using simulations and six in vivo brain datasets. The code is available at https://github.com/hanwencat/SAME-ECOS. RESULTS: Using NNLS as the baseline, SAME-ECOS achieved over 15% higher overall cosine similarity scores in producing the T2 spectrum, and more than 10% lower mean absolute error in calculating the myelin water fraction (MWF), as well as demonstrated better robustness to noise in the simulation tests. Applying to in vivo data, MWF from SAME-ECOS and NNLS was highly correlated among all study participants. However, a distinct separation of the myelin water peak and the intra/extra-cellular water peak was only observed in the mean T2 spectra determined using SAME-ECOS. In terms of data processing speed, SAME-ECOS is approximately 30 times faster than NNLS, achieving a whole-brain analysis in 3 min. CONCLUSION: Compared with NNLS, the SAME-ECOS method yields much more reliable T2 spectra in a dramatically shorter time, increasing the feasibility of multi-component T2 decay analysis in clinical settings.


Assuntos
Bainha de Mielina , Água , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Análise Espectral
5.
Hum Brain Mapp ; 42(10): 3119-3130, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939206

RESUMO

Magnetic resonance spectroscopy (MRS) measures cerebral metabolite concentrations, which can inform our understanding of the neurobiological processes associated with stroke recovery. Here, we investigated whether metabolite concentrations in primary motor and somatosensory cortices (sensorimotor cortex) are impacted by stroke and relate to upper-extremity motor impairment in 45 individuals with chronic stroke. Cerebral metabolite estimates were adjusted for cerebrospinal fluid and brain tissue composition in the MRS voxel. Upper-extremity motor impairment was indexed with the Fugl-Meyer (FM) scale. N-acetylaspartate (NAA) concentration was reduced bilaterally in stroke participants with right hemisphere lesions (n = 23), relative to right-handed healthy older adults (n = 15; p = .006). Within the entire stroke sample (n = 45) NAA and glutamate/glutamine (GLX) were lower in the ipsilesional sensorimotor cortex, relative to the contralesional cortex (NAA: p < .001; GLX: p = .003). Lower ipsilesional NAA was related to greater extent of corticospinal tract (CST) injury, quantified by a weighted CST lesion load (p = .006). Cortical NAA and GLX concentrations did not relate to the severity of chronic upper-extremity impairment (p > .05), including after a sensitivity analysis imputing missing metabolite data for individuals with large cortical lesions (n = 5). Our results suggest that NAA, a marker of neuronal integrity, is sensitive to stroke-related cortical damage and may provide mechanistic insights into cellular processes of cortical adaptation to stroke. However, cortical MRS metabolites may have limited clinical utility as prospective biomarkers of upper-extremity outcomes in chronic stroke.


Assuntos
Ácido Aspártico/análogos & derivados , Atividade Motora , Córtex Sensório-Motor/metabolismo , Acidente Vascular Cerebral/metabolismo , Extremidade Superior , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico/metabolismo , Doença Crônica , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia
6.
Neuroimage ; 210: 116551, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978542

RESUMO

PURPOSE: Based on a deep learning neural network (NN) algorithm, a super fast and easy to implement data analysis method was proposed for myelin water imaging (MWI) to calculate the myelin water fraction (MWF). METHODS: A NN was constructed and trained on MWI data acquired by a 32-echo 3D gradient and spin echo (GRASE) sequence. Ground truth labels were created by regularized non-negative least squares (NNLS) with stimulated echo corrections. Voxel-wise GRASE data from 5 brains (4 healthy, 1 multiple sclerosis (MS)) were used for NN training. The trained NN was tested on 2 healthy brains, 1 MS brain with segmented lesions, 1 healthy spinal cord, and 1 healthy brain acquired from a different scanner. RESULTS: Production of whole brain MWF maps in approximately 33 â€‹s can be achieved by a trained NN without graphics card acceleration. For all testing regions, no visual differences between NN and NNLS MWF maps were observed, and no obvious regional biases were found. Quantitatively, all voxels exhibited excellent agreement between NN and NNLS (all R2>0.98, p â€‹< â€‹0.001, mean absolute error <0.01). CONCLUSION: The time for accurate MWF calculation can be dramatically reduced to less than 1 â€‹min by the proposed NN, addressing one of the barriers facing future clinical feasibility of MWI.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Neuroimagem/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Magn Reson Med ; 84(3): 1264-1279, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32065474

RESUMO

PURPOSE: Myelin water imaging (MWI) provides a valuable biomarker for myelin, but clinical application has been restricted by long acquisition times. Accelerating the standard multi-echo T2 acquisition with gradient echoes (GRASE) or by 2D multi-slice data collection results in image blurring, contrast changes, and other issues. Compressed sensing (CS) can vastly accelerate conventional MRI. In this work, we assessed the use of CS for in vivo human MWI, using a 3D multi spin-echo sequence. METHODS: We implemented multi-echo T2 relaxation imaging with compressed sensing (METRICS) and METRICS with partial Fourier acceleration (METRICS-PF). Scan-rescan data were acquired from 12 healthy controls for assessment of repeatability. MWI data were acquired for METRICS in 9 m:58 s and for METRICS-PF in 7 m:25 s, both with 1.5 × 2 × 3 mm3 voxels, 56 echoes, 7 ms ΔTE, and 240 × 240 × 170 mm3 FOV. METRICS was compared with a novel multi-echo spin-echo gold-standard (MSE-GS) MWI acquisition, acquired for a single additional subject in 2 h:2 m:40 s. RESULTS: METRICS/METRICS-PF myelin water fraction had mean: repeatability coefficient 1.5/1.1, coefficient of variation 6.2/4.5%, and intra-class correlation coefficient 0.79/0.84. Repeatability metrics comparing METRICS with METRICS-PF were similar, and both sequences agreed with reference values from literature. METRICS images and quantitative maps showed excellent qualitative agreement with those of MSE-GS. CONCLUSION: METRICS and METRICS-PF provided highly repeatable MWI data without the inherent disadvantages of GRASE or 2D multi-slice acquisition. CS acceleration allows MWI data to be acquired rapidly with larger FOV, higher estimated SNR, more isotropic voxels and more echoes than with previous techniques. The approach introduced here generalizes to any multi-component T2 mapping application.


Assuntos
Processamento de Imagem Assistida por Computador , Bainha de Mielina , Benchmarking , Humanos , Imageamento por Ressonância Magnética , Água
8.
NMR Biomed ; 32(6): e4083, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889311

RESUMO

INTRODUCTION: Clinical trials that involve participants from multiple sites necessitate standardized and reliable quantitative MRI outcomes to detect significant group differences over time. Metabolite concentrations measured by proton MRS (1 H-MRS) provide valuable information about in vivo metabolism of the central nervous system, but can vary based on the acquisition and quantitation methods used by different MR sites. Therefore, we investigated the intra- and inter-site reproducibility of metabolite concentrations measured by 1 H-MRS on MRI scanners from a single manufacturer across six sites. METHODS: Five healthy controls were scanned twice within 24 h at six participating 3 T MR sites with large single-voxel PRESS (TE/TR/NSA = 36 ms/4000 ms/56) and anatomical images for voxel positioning and correction of partial volume relaxation. Absolute metabolite concentrations were calculated relative to the T1 and T2 relaxation corrected signal from water. Intra- and inter-site reproducibility was assessed using Bland-Altman plots and intra- and inter-site coefficient of variation (CoV) as well as intra- and inter-site intra-class correlation coefficient. RESULTS: The median intra-site CoVs for the five major metabolite concentrations ([NAA], [tCr], [Glu], [tCho] and [Ins]) were between 2.5 and 5.3%. Inter-site CoVs were also low, with the median CoVs for all metabolites between 3.7 and 6.4%. Metabolite concentrations were robust to small inconsistencies in voxel placement and site was not the driving factor in the variance of the measurement of any metabolite concentration. Between-subject differences accounted for the majority of the concentration variability for creatine, choline and myo-inositol (42-65% of the variance). CONCLUSION: A large single-voxel 1 H-MRS acquisition from a single manufacturer's MRI scanner is highly reproducible and reliable for multi-site clinical trials.


Assuntos
Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Adulto , Feminino , Humanos , Modelos Lineares , Masculino , Metaboloma , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
9.
Mult Scler ; 25(6): 811-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29663845

RESUMO

BACKGROUND: Tissue damage in both multiple sclerosis (MS) lesions and normal-appearing white matter (NAWM) are important contributors to disability and progression. Specific aspects of MS pathology can be measured using advanced imaging. Alemtuzumab is a humanised monoclonal antibody targeting CD52 developed for MS treatment. OBJECTIVE: To investigate changes over 2 years of advanced magnetic resonance (MR) metrics in lesions and NAWM of MS patients treated with alemtuzumab. METHODS: A total of 42 relapsing-remitting alemtuzumab-treated MS subjects were scanned for 2 years at 3 T. T1 relaxation, T2 relaxation, diffusion tensor, MR spectroscopy and volumetric sequences were performed. Mean T1 and myelin water fraction (MWF) were determined for stable lesions, new lesions and NAWM. Fractional anisotropy was calculated for the corpus callosum (CC) and N-acetylaspartate (NAA) concentration was determined from a large NAWM voxel. Brain parenchymal fraction (BPF), cortical thickness and CC area were also calculated. RESULTS: No change in any MR measurement was found in lesions or NAWM over 24 months. BPF, cortical thickness and CC area all showed decreases in the first year followed by stability in the second year. CONCLUSION: Advanced MR biomarkers of myelin (MWF) and neuron/axons (NAA) show no change in NAWM over 24 months in alemtuzumab-treated MS participants.


Assuntos
Alemtuzumab/farmacologia , Progressão da Doença , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente , Substância Branca , Adulto , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Resultado do Tratamento , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
10.
Mult Scler ; 24(12): 1557-1568, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28782447

RESUMO

BACKGROUND: Reduced myelin water fraction (MWF, a marker for myelin), increased geometric mean T2 (ieGMT2, reflecting intra/extracellular water properties), and increased T1 (related to total water content) have been observed in cross-sectional studies of multiple sclerosis (MS) normal-appearing white matter (NAWM). OBJECTIVE: To assess longitudinal changes of magnetic resonance (MR) measures in relapsing-remitting MS (RRMS) brain NAWM. METHODS: A total of 11 subjects with RRMS and 4 controls were scanned on a 3T MRI at baseline and long-term follow-up (LTFU; 3.2-5.8 years) with a 32-echo T2 relaxation and an inversion recovery T1 sequence. For every voxel, MWF, ieGMT2, and T1 were obtained. Mean, peak height, and peak location from NAWM mask-based histograms were determined. RESULTS: In MS subjects, NAWM MWF mean decreased by 8% ( p = 0.0016). No longitudinal changes were measured in T1 or ieGMT2. There was no relationship between change in any MR metric and change in EDSS. Control white matter showed no differences over time in any metric. CONCLUSION: The decreases we observed in MWF suggest that changes in myelin integrity and loss of myelin may be occurring diffusely and over long time periods in the MS brain. The timescale of these changes indicates that chronic, progressive myelin damage is an evolving process occurring over many years.


Assuntos
Encéfalo/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Bainha de Mielina/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Água/análise , Substância Branca/diagnóstico por imagem
11.
J Magn Reson Imaging ; 44(2): 296-304, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26825048

RESUMO

PURPOSE: To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). MATERIALS AND METHODS: Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. RESULTS: Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. CONCLUSION: We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Ingestão de Líquidos/fisiologia , Jejum/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adulto , Encéfalo/anatomia & histologia , Água Potável , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Privação de Água/fisiologia
12.
Neural Plast ; 2016: 7526135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293906

RESUMO

Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Bainha de Mielina/fisiologia , Plasticidade Neuronal/fisiologia , Substância Branca/fisiologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
13.
Magn Reson Med ; 74(5): 1327-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25399771

RESUMO

PURPOSE: A steady-state approach that was termed multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has recently been proposed for myelin water fraction (fM) mapping in brain development and demyelinating diseases. However, fMs estimated by mcDESPOT are significantly higher than myelin water fraction derived from multiecho spin echo T2-decay curve approaches. Magnetization transfer (MT), enhanced by the use of short, relatively high amplitude radiofrequency (RF) pulses in mcDESPOT, may artifactually influence fM maps. Our goal was to investigate the role of MT in mcDESPOT. METHODS: mcDESPOT data was collected twice from three healthy volunteers using short RF pulses with higher MT effect and long RF pulses with lower MT effect. MR parameters from 11 white and gray regions were compared using a paired student t-test. Whole slice difference images were also compared. RESULTS: MT effects had a substantial influence on the signal generated by the balanced steady-state free procession sequences used in mcDESPOT. However, these MT effects were not clearly evident in the fM values determined by the conventional two-pool mcDESPOT analysis. CONCLUSION: The signal generated from mcDESPOT is sensitive to MT, but the extracted myelin water fractions are relatively insensitive to changes of MT.


Assuntos
Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Modelos Biológicos , Bainha de Mielina/química , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Água/química , Adulto Jovem
14.
Magn Reson Med ; 73(1): 223-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24515972

RESUMO

PURPOSE: Myelin water fraction is conventionally measured from the T2 decay curve. Recently, a steady-state approach entitled multicomponent-driven equilibrium single pulse observation of T1 /T2 (mcDESPOT) was employed for myelin water fraction mapping. However, no direct comparison between the established multiecho T2 relaxation method and mcDESPOT has been performed. METHODS: Gradient and spin echo (GRASE) acquired T2 decay curve and mcDESPOT measurements were acquired from 10 healthy volunteers using a 3T MRI. We compared myelin water fraction, transmit radio frequency field (B1 ), and T2 's of intra- and extracellular water obtained from both methods. RESULTS: For all brain regions examined, myelin water fractions from mcDESPOT were significantly higher than those from multiecho GRASE. B1 maps were qualitatively similar between GRASE and mcDESPOT, but multicomponent T2 times were significantly different. To investigate the effect of exchange, mcDESPOT data were analyzed with and without exchange. When exchange was turned off, intra- and extracellular T2 times from mcDESPOT were roughly consistent with GRASE results; however, myelin water fractions derived from mcDESPOT were still significantly higher than those derived from GRASE. CONCLUSION: Myelin water fraction values derived from mcDESPOT cannot be considered to be equivalent to those derived from T2 decay curve approaches.


Assuntos
Água Corporal/química , Química Encefálica , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Bainha de Mielina/química , Fibras Nervosas Mielinizadas/química , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
15.
Mov Disord ; 30(3): 393-401, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690257

RESUMO

Putaminal metabolites examined using cross-sectional magnetic resonance spectroscopy (MRS) can distinguish pre-manifest and early Huntington's Disease (HD) individuals from controls. An ideal biomarker, however, will demonstrate longitudinal change over short durations. The objective here was to evaluate longitudinal in vivo brain metabolite profiles in HD over 24 months. Eighty-four participants (30 controls, 25 pre-manifest HD, 29 early HD) recruited as part of TRACK-HD were imaged at baseline, 12 months, and 24 months using 3T MRS of left putamen. Automated putaminal volume measurement was performed simultaneously. To quantify partial volume effects, spectroscopy was performed in a second, white matter voxel adjacent to putamen in six subjects. Subjects underwent TRACK-HD motor assessment. Statistical analyses included linear regression and one-way analysis of variance (ANOVA). At all time-points N-acetyl aspartate and total N-acetyl aspartate (NAA), neuronal integrity markers, were lower in early HD than in controls. Total NAA was lower in pre-manifest HD than in controls, whereas the gliosis marker myo-inositol (MI) was robustly elevated in early HD. Metabolites were stable over 24 months with no longitudinal change. Total NAA was not markedly different in adjacent white matter than putamen, arguing against partial volume confounding effects in cross-sectional group differences. Total NAA correlations with disease burden score suggest that this metabolite may be useful in identifying neurochemical responses to therapeutic agents. We demonstrate almost consistent group differences in putaminal metabolites in HD-affected individuals compared with controls over 24 months. Future work establishing spectroscopy as an HD biomarker should include multi-site assessments in large, pathologically diverse cohorts.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Adulto , Análise de Variância , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estudos Transversais , Feminino , Humanos , Inositol/metabolismo , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Putamen/patologia , Estatística como Assunto , Fatores de Tempo , Substância Branca/patologia
16.
J Magn Reson Imaging ; 38(6): 1445-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23553991

RESUMO

PURPOSE: To assess the reproducibility of myelin water fraction (MWF) and geometric mean T2 (GMT2 ), which are in vivo markers of pathological changes underlying disability and progression in diseases such as multiple sclerosis. MATERIALS AND METHODS: Five healthy volunteers were scanned twice within 24 hours at six different sites using the same manufacturer's 3T magnetic resonance (MR) system. T2 distributions were produced by fitting multiecho 3D T2 data using non-negative least squares, with stimulated echo correction. MWF, the fraction of signal with T2 between 15 and 40 msec to the entire signal, and GMT2 , the mean T2 on a logarithmic scale from T2 between 40 and 200 msec, were examined in white matter. RESULTS: Intrasite coefficients of variation (COVs) were low (mean 3.99% for MWF and 0.51% for GMT2 ), as were intersite COVs (mean 4.68% for MWF, 0.31% for GMT2 ). Scan-rescan intraclass correlation coefficients (ICCs) (0.76 for MWF and 0.93 for GMT2 ) and Bland-Altman plots indicated good agreement between single site scans. Intersite ICCs were relatively high (0.69 for MWF and 0.92 for GMT2 ), revealing good intersite reliability. CONCLUSION: MWF and GMT2 measures are reproducible between scans and across sites with an equivalent MR scanner and sequence protocol. Multicenter clinical trials using quantitative T2 relaxation are feasible.


Assuntos
Água Corporal/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Adulto , Colúmbia Britânica , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Sci Adv ; 9(44): eadh9853, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910622

RESUMO

Quantitative magnetic resonance imaging (MRI) techniques are powerful tools for the study of human tissue, but, in practice, their utility has been limited by lengthy acquisition times. Here, we introduce the Constrained, Adaptive, Low-dimensional, Intrinsically Precise Reconstruction (CALIPR) framework in the context of myelin water imaging (MWI); a quantitative MRI technique generally regarded as the most rigorous approach for noninvasive, in vivo measurement of myelin content. The CALIPR framework exploits data redundancy to recover high-quality images from a small fraction of an imaging dataset, which allowed MWI to be acquired with a previously unattainable sequence (fully sampled acquisition 2 hours:57 min:20 s) in 7 min:26 s (4.2% of the dataset, acceleration factor 23.9). CALIPR quantitative metrics had excellent precision (myelin water fraction mean coefficient of variation 3.2% for the brain and 3.0% for the spinal cord) and markedly increased sensitivity to demyelinating disease pathology compared to a current, widely used technique. The CALIPR framework facilitates drastically improved MWI and could be similarly transformative for other quantitative MRI applications.


Assuntos
Bainha de Mielina , Água , Humanos , Bainha de Mielina/patologia , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
18.
Neuroimage ; 63(1): 533-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776448

RESUMO

Myelin water imaging, a magnetic resonance imaging technique capable of resolving the fraction of water molecules which are located between the layers of myelin, is a valuable tool for investigating both normal and pathological brain structure in vivo. There is a strong need for pulse sequences which improve the quality and applicability of myelin water imaging in a clinical setting. In this study, we validated the use of a fast multi echo T(2) relaxation sequence for myelin water imaging. Using a multiple combined gradient and spin echo (GRASE) technique, we attain whole cerebrum myelin water images in under 15 minutes. Region of interest analysis indicates that this fast GRASE imaging sequence produces results which are in good agreement with pure spin echo measurements (R(2)=0.95, p<0.0001). This drastic improvement in speed and brain coverage compared to current spin echo standards will allow increased inclusion of myelin water imaging in neurological research protocols and opens up the possibility of applications in a clinical setting.


Assuntos
Algoritmos , Água Corporal/metabolismo , Cérebro/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Água/análise , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
J Magn Reson ; 338: 107205, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390716

RESUMO

Inhomogeneous magnetization transfer (ihMT) is a novel MRI technique used to measure white matter myelination in the brain and spinal cord. In the brain, ihMT has a strong orientation dependence which is likely to arise from the anisotropy of dipolar couplings between protons on oriented lipids in the myelin bilayers. We measured the orientation dependence of the second moment (M2) of the lineshape, dipolar order relaxation rate (R1D), and ihMT ratio (ihMTR) in an oriented phospholipid bilayer at 9.4 T. We found a strong orientation dependence in all three parameters. ihMTR and R1D were maximized when the bilayers were aligned perpendicular to B0 and minimized near the magic angle (∼54.7°). M2 followed an orientation dependence given by the second Legendre polynomial squared as predicted by the form of the secular dipolar Hamiltonian. These results were used to calculate the orientation dependence of R1D and ihMTR in a diffusionless myelin sheath model, which showed ihMTR was maximised for fibers perpendicular to B0 and minimised at 45°, similar to ex-vivo spinal cord with a larger prepulse frequency offset, but in contrast to in vivo brain findings. Adding fiber dispersion to this model smoothed the orientation dependence curve as expected. Our results suggest the importance of the effects of lipid diffusion and prepulse offset frequency on ihMTR.


Assuntos
Fosfolipídeos , Substância Branca , Encéfalo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina
20.
Neuroimage ; 54(2): 1083-90, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20832480

RESUMO

Multiecho T(2) relaxation measurements offer specific information about myelin content through the myelin water fraction (MWF), as well as about the water environments through the intra- and extra-cellular (IE), and global, geometric mean T(2) (GMT(2)) times. While these measurements have yielded new insights into brain development and pathologies, they have yet to be thoroughly investigated in the spinal cord. The goals of this study were: (1) to apply a new 3D multiecho T(2) relaxation measurement in the cervical spine with sufficient axial resolution to distinguish grey and white matter; (2) to perform a pilot reliability assessment of the resulting MWF and GMT(2) measures in a target population; and (3) to detect differences in these measures between a younger cohort (20-30 years of age) and an older cohort (50-75 years of age) of healthy adults. The results demonstrated that the MWF in younger healthy adults follows the known pattern of lower myelin content in grey matter (mean (95% confidence interval)) (0.049 (0.030-0.067)) as compared to white matter (0.296 (0.275-0.317), p<0.001). The reliability coefficients were 0.65 and 0.82 for the MWF in the dorsal (DC) and lateral column (LC) white matter, respectively; 0.79 and 0.52 for the IE GMT(2); and 0.74 and 0.73 for the global GMT(2). Significantly lower MWF were found in the older adults than in the younger adults (DC p=0.014; LC p=0.012), as well as lower IE GMT(2) times (DC p=0.008; LC p=0.042), however, the global GMT(2) times did not show any differences. These changes in MWF and IE GMT(2) times, but not in global GMT(2) times, indicate that multiecho T(2) relaxation measures are sensitive to changes in myelin integrity and cell morphology that may not be apparent on conventional T(2) weighted images.


Assuntos
Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Medula Espinal/química , Adulto , Idoso , Vértebras Cervicais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA