Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2217928120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094133

RESUMO

Topological mechanical metamaterials have enabled new ways to control stress and deformation propagation. Exemplified by Maxwell lattices, they have been studied extensively using a linearized formalism. Herein, we study a two-dimensional topological Maxwell lattice by exploring its large deformation quasi-static response using geometric numerical simulations and experiments. We observe spatial nonlinear wave-like phenomena such as harmonic generation, localized domain switching, amplification-enhanced frequency conversion, and solitary waves. We further map our linearized, homogenized system to a non-Hermitian, nonreciprocal, one-dimensional wave equation, revealing an equivalence between the deformation fields of two-dimensional topological Maxwell lattices and nonlinear dynamical phenomena in one-dimensional active systems. Our study opens a regime for topological mechanical metamaterials and expands their application potential in areas including adaptive and smart materials and mechanical logic, wherein concepts from nonlinear dynamics may be used to create intricate, tailored spatial deformation and stress fields greatly transcending conventional elasticity.

2.
Phys Rev E ; 107(3-2): 035002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072976

RESUMO

Soft layered systems buckling to form surface patterns has been widely studied under quasistatic loading. Here, we study the dynamic formation of wrinkles in a stiff-film-on-viscoelastic-substrate system as a function of impact velocity. We observe a spatiotemporally varying range of wavelengths, which display impactor velocity dependence and exceed the range exhibited under quasistatic loading. Simulations suggest the importance of both inertial and viscoelastic effects. Film damage is also examined, and we find that it can tailor dynamic buckling behavior. We expect our work to have applications to soft elastoelectronic and optic systems and open routes for nanofabrication.

3.
Sci Adv ; 9(45): eadi2606, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948528

RESUMO

Accurate modeling and prediction of damage induced by dynamic loading in materials have long proved to be a difficult task. Examination of postmortem recovered samples cannot capture the time-dependent evolution of void nucleation and growth, and attempts at analytical models are hindered by the necessity to make simplifying assumptions, because of the lack of high-resolution, in situ, time-resolved experimental data. We use absorption contrast imaging to directly image the time evolution of spall damage in metals at ∼1.6-µm spatial resolution. We observe a dependence of void distribution and size on time and microstructure. The insights gained from these data can be used to validate and improve dynamic damage prediction models, which have the potential to lead to the design of superior damage-resistant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA