RESUMO
NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-π intramolecular interaction.
RESUMO
Transition metal complexes with ß-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn ß-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.
RESUMO
Photoreforming promoted by metal oxide nanophotocatalysts is an attractive route for clean and sustainable hydrogen generation. In the present work, we propose for the first time the use of supported Mn3O4 nanosystems, both pure and functionalized with Au nanoparticles (NPs), for hydrogen generation by photoreforming. The target oxide systems, prepared by chemical vapor deposition (CVD) and decorated with gold NPs by radio frequency (RF) sputtering, were subjected to a thorough chemico-physical characterization and utilized for a proof-of-concept H2 generation in aqueous ethanolic solutions under simulated solar illumination. Pure Mn3O4 nanosystems yielded a constant hydrogen production rate of 10 mmol h-1 m-2 even for irradiation times up to 20 h. The introduction of Au NPs yielded a significant enhancement in photocatalytic activity, which decreased as a function of irradiation time. The main phenomena causing the Au-containing photocatalyst deactivation have been investigated by morphological and compositional analysis, providing important insights for the design of Mn3O4-based photocatalysts with improved performances.
RESUMO
Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses, from heterogeneous catalysis to gas sensing, owing to its structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasma-assisted process starting from a fluorinated manganese(II) molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and morphology revealed the formation of F-doped, oxygen-deficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature ( TG). Whereas phase-pure ß-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vis-light activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
RESUMO
Molecular engineering of manganese(II) diamine diketonate precursors is a key issue for their use in the vapor deposition of manganese oxide materials. Herein, two closely related ß-diketonate diamine MnII adducts with different fluorine contents in the diketonate ligands are examined. The target compounds were synthesized by a simple procedure and, for the first time, thoroughly characterized by a joint experimental-theoretical approach, to understand the influence of the ligand on their structures, electronic properties, thermal behavior, and reactivity. The target compounds are monomeric and exhibit a pseudo-octahedral coordination of the MnII centers, with differences in their structure and fragmentation processes related to the ligand nature. Both complexes can be readily vaporized without premature side decompositions, a favorable feature for their use as precursors for chemical vapor deposition (CVD) or atomic layer deposition applications. Preliminary CVD experiments at moderate growth temperatures enabled the fabrication of high-purity, single-phase Mn3 O4 nanosystems with tailored morphology, which hold great promise for various technological applications.
RESUMO
The preparation of weblike titanium dioxide thin films by atomic layer deposition on cellulose biotemplates is reported. The method produces a TiO2 web, which is flexible and transferable from the deposition substrate to that of the end application. Removal of the cellulose template by calcination converts the amorphous titania to crystalline anatase and gives the structure a hollow morphology. The TiO2 webs are thoroughly characterized using electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy to give new insight into manufacturing of porous titanium dioxide structures by means of template-based methods. Functionality and integrity of the TiO2 hollow weblike thin films were successfully confirmed by applying them as electrodes in dye-sensitized solar cells.
RESUMO
Multilayer assemblies of two crown-type type heteropolyanions (HPA), [Cu20Cl(OH)24(H2O)12(P8W48O184)](25-) and Ni4(P8W48O148)(WO2)](28-), have been immobilized onto glassy carbon electrode surfaces via the layer-by-layer (LBL) technique employing polycathion-stabilized silver nanoparticles (AgNP) as the cationic layer within the resulting thin films characterized by electrochemical and physical methods. The redox behaviors of both HPA monitored during LBL assembly with cyclic voltammetry and impedance spectroscopy revealed significant changes by immobilization. The presence of AgNPs led to the retention of film porosity and electronic conductivity, which has been shown with impedance and voltammeric studies of film permeabilities toward reversible redox probes. The resulting films have been characterized by physical methods. Finally, the electrocatalytic performance of obtained films with respect to nitrite and nitrate electrocatalytic reduction has been comparatively studied for both catalysts. Nickel atoms trapped inside HPA exhibited a higher specific activity for reduction.
RESUMO
The fabrication of silane-based fluorinated self-assembled monolayers (FSAMs) on indium tin oxide (ITO, a transparent electrode) was carried out making use of the following fluoroalkylsilanes (FAS): 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-N-[3-(trimethoxysilyl)propyl]hexanamide (1; R(F) = C5F11) and 1,1,2,2,3,3,4,4,4-nonafluoro-N-[3-(trimethoxysilyl)propyl]butane-1-sulfonamide (2; R(F) = C4F9), containing an embedded amide and a sulfonamide group, respectively, between the short perfluoroalkyl chain (R(F) with C < 6) and the syloxanic moiety. The obtained FSAM-modified/ITO systems were characterized by X-ray photoelectron spectroscopy (XPS), contact angle (CA), surface energy measurements, and electrochemical impedance spectroscopy (EIS) and compared to ITO modified with a 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltriethoxysilane (3; R(F) = C6F13), with the perfluoroalkyl group linked to the syloxanic moiety through a simple hydrocarbon chain. The results obtained show that the presence of the -NHCO- and -NHSO2- groups have a different mode of action and, with the former, despite the short perfluoroalkyl chain, the ITO-1 system presents a CA (Θ(water )= 113.5°) and surface energy (γl = 14.0 mJ m(-2)) typical of amphiphobic materials. These properties can be exploited in a variety of applications, such as self-cleaning, anti-fouling, and anti-fingerprint coatings, and in advanced microelectronic components.
RESUMO
In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈µg/cm2) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation. The present results provide new insights on the design of nano-engineered heterocomposites featuring improved performances thanks to Pt coupling with g-CN, a low-cost and environmentally friendly visible light-active semiconductor. Overall, this work might open attractive avenues for the generation of green hydrogen via aqueous ethanol electrolysis and the photo-promoted alcohol electrooxidation in fuel cells.
RESUMO
The development of low-cost and high-efficiency oxygen evolution reaction (OER) photoelectrocatalysts is a key requirement for H2 generation via solar-assisted water splitting. In this study, we report on an amenable fabrication route to carbon cloth-supported graphitic carbon nitride (gCN) nanoarchitectures, featuring a modular dispersion of NiO as co-catalyst. The synergistic interaction between gCN and NiO, along with the tailoring of their size and spatial distribution, yield very attractive OER performances and durability in freshwater splitting, of great significance for practical end-uses. The potential of gCN electrocatalysts containing ultra-dispersed, i. e. "quasi-atomic" NiO, exhibiting a higher activity than the ones containing nickel oxide nanoaggregates, is further highlighted by their activity even in real seawater. This work suggests that efficient OER catalysts can be designed through the construction of optimized interfaces between transition metal oxides and carbon nitride, yielding inexpensive and promising noble metal-free systems for real-world applications.
RESUMO
In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈-5.7 mA cm-2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.
RESUMO
Significant efforts have been continuously devoted to the mastering of green catalysts for the oxygen evolution reaction (OER), whose sluggish kinetics prevents a broad market penetration of water splitting as a sustainable route for large-scale hydrogen production. In this extensive scenario, carbon nitride (CN)-based systems are in focus thanks to their favorable characteristics, and, whereas graphitic CN has been largely investigated, the potential of amorphous carbon nitride (a-CNx) systems remains almost entirely unexplored. In this regard, our study presents a novel two-step plasma-assisted route to a-CNx systems comprising ultra-dispersed, i.e. "quasi-atomic" CuxO (x = 1, 2). The target materials were fabricated using an original strategy consisting in the magnetron sputtering of a-CNx on conducting glasses at room temperature, followed by functionalization with low CuxO amounts by radio frequency (RF)-sputtering, and final annealing under an inert atmosphere. The tailoring of the CuxO co-catalyst content and spatial dispersion, as well as the overall composite features as a function of preparative conditions, enabled a direct modulation of the resulting OER performances, rationalized based on the formation of p-n CuxO/a-CNx heterojunctions. The amenable and scalable synthesis approach underscores the practicality of this method to develop (photo)electrocatalysts synergistically integrating the advantages of both constituents, yielding low-cost, green, and stable functional platforms that could contribute to the broader adoption of sustainable energy solutions.
RESUMO
Correction for 'Plasma-assisted fabrication of ultra-dispersed copper oxides in and on C-rich carbon nitride as functional composites for the oxygen evolution reaction' by Mattia Benedet et al., Dalton Trans., 2024, https://doi.org/10.1039/d4dt02186j.
RESUMO
Supported fluorine-doped alpha-Fe2O3 nanomaterials were synthesized by Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) at temperatures between 300 and 500 degrees C, using a fluorinated iron(II) diketonate-diamine compound as a single-source precursor for both Fe and F. The system structure, morphology and composition were thoroughly investigated by various characterization techniques, highlighting the possibility of controlling the fluorine doping level by varying the sole growth temperature. Photocatalytic H2 production from water/ethanol solutions under simulated solar irradiation evidenced promising gas evolution rates, candidating the present PE-CVD approach as a valuable strategy to fabricate highly active supported materials.
Assuntos
Flúor/química , Flúor/efeitos da radiação , Hidrogênio/química , Hidrogênio/isolamento & purificação , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Luz , Teste de Materiais , Fotoquímica/métodosRESUMO
The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm2, a Tafel slope of ≈70 mV/dec, and a turnover frequency of 6.52 × 10-3 s-1, accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.
RESUMO
Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
RESUMO
NiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(II) ß-diketonate-diamine adducts of general formula [NiL2TMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = N,N,N',N'-tetramethylethylenediamine]. Controlled variations in the diketonate structure are pursued to investigate the influence of steric hindrance and fluorination degree on the chemico-physical characteristics of the compounds. A multi-technique investigation supported by density functional calculations highlights that all complexes are air-insensitive and monomeric and that their thermal properties and fragmentation patterns are directly dependent on functional groups in the diketonate ligands. Preliminary thermal CVD experiments demonstrate the precursors' suitability for the obtainment of NiO films endowed with flat and homogeneous surfaces, paving the way to future implementation for CVD end-uses.
RESUMO
Anchoring terminal octenyl tails on molecular polyoxotungstates yield polymerizable organic-inorganic monomers with formula [{CH(2)=CH(CH(2))(6)Si}(x)O(y)SiW(w)O(z)](4-) [x = 2, w = 11, y = 1, z = 39 (1); x = 2, w = 10, y = 1, z = 36 (2); and x = 4, w = 9, y = 3, z = 34 (3)]. These molecular hybrids can use aqueous hydrogen peroxide to catalyze the selective oxidation of organic sulfides in CH(3)CN. Copolymerization of 1-3 with methyl methacrylate and ethylene glycol dimethacrylate leads to porous materials with a homogeneous distribution of the functional monomers, as indicated by converging evidence from FTIR spectroscopy and electronic microscopy. The catalytic polymers activate hydrogen peroxide for oxygen transfer, as demonstrated by the quantitative and selective oxidation of methyl p-tolyl sulfide, which was screened as model substrate. The hybrid material containing monomer 2 was also tested in n-octane to evaluate its potential for the oxidation and removal of dibenzothiophene, a well-known gasoline contaminant.
RESUMO
The other polymorph: A vapor-phase route for the fabrication of ß-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the ß polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.
Assuntos
Fontes de Energia Elétrica , Compostos Férricos/química , Gases/química , Lítio/química , Nanoestruturas/química , Eletrodos , Íons/químicaRESUMO
CuO/ZnO nanocomposites were synthesized on Al(2)O(3) substrates by a hybrid plasma-assisted approach, combining the initial growth of ZnO columnar arrays by plasma-enhanced chemical vapor deposition (PE-CVD) and subsequent radio frequency (RF) sputtering of copper, followed by final annealing in air. Chemical, morphological, and structural analyses revealed the formation of high-purity nanosystems, characterized by a controllable dispersion of CuO particles into ZnO matrices. The high surface-to-volume ratio of the obtained materials, along with intimate CuO/ZnO intermixing, resulted in the efficient detection of various oxidizing and reducing gases (such as O(3), CH(3)CH(2)OH, and H(2)). The obtained data are critically discussed and interrelated with the chemical and physical properties of the nanocomposites.