Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771794

RESUMO

Fluorinated polymers have unique wettability and protein adsorption properties. The site-specific alteration of these properties could expand their application to different research areas. In this work, a fluorinated homopolymer and two of its copolymers with 4-vinylbenzyl glycidyl ether (VBGE) are synthesized by free radical polymerization. The produced polymers are then used to develop resist formulations by the addition of a photoacid generator. Films of these formulations are exposed to ultraviolet radiation through a binary mask and heated to create the pattern. It is found that the water contact angle values of the exposed films areas are reduced compared to those of the unexposed ones, with the exception of pentafluorophenyl methacrylate (PFMA) homopolymer film. This is attributed to the reaction of the epoxy groups creating x-links and producing hydroxyl groups and the cleavage of the pentafluorophenyl group from the ester group leading to carboxylic acid groups. Both modifications on the exposed areas are verified by FTIR spectroscopy and ToF-SIMS analysis. In addition, the biomolecules adsorption ability of the exposed area is increasing 10-15 times compared to the unexposed one for the PFMA homopolymer and the PFMA/VBGE 1:1 copolymer. Thus, the proposed polymers and patterning procedure could find application to spatially directed immobilization of biomolecules and/or cells onto a surface for both biosensing and tissue engineering purposes.

2.
Colloids Surf B Biointerfaces ; 178: 208-213, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856590

RESUMO

The patterning of organic materials on solid substrate surfaces has been demonstrated by several methods, such as photolithography, soft lithography, imprint lithography and ink-jet printing. Fluorinated polymers and solvents provide attractive material systems to develop new patterning approaches, as they are chemically orthogonal to non-fluorinated organic molecules, allowing their efficient incorporation in different devices and systems. Moreover, fluorinated polymers are soluble in hydrofluoroether solvents, benign to biomolecules, and can be properly engineered to enable efficient photolithographic patterning. In this work, we report the development of a new photolithographic process for patterning biomolecules on any kind of surfaces either by physical adsorption or covalent bonding. The photoresist is based on a fluorinated material and hydrofluoroether solvents that have minimum interactions with biomolecules and thus they can be characterized as orthogonal to the biomolecules (bio-orthogonal). In both cases, the creation of patterns with dimensions down to 2 µm was achieved. The implementation of the developed photolithographic procedure for the creation of a multi-protein microarray is demonstrated.


Assuntos
Nanotecnologia/métodos , Polímeros/química , Impressão/métodos , Análise Serial de Proteínas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA