Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(22): 6078-6092, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941955

RESUMO

Nanocomposite aerogels exhibit high porosity and large interfacial surface areas, enabling enhanced chemical transport and reactivity. Such mesoporous architectures can be prepared by freeze-casting naturally-derived biopolymers such as silk fibroin, but often form mechanically weak structures that degrade in water, which limits their performance under ambient conditions. Adding 2D material fillers such as graphene oxide (GO) or transition metal carbides (e.g. MXene) could potentially reinforce these aerogels via stronger intermolecular interactions with the polymeric binder. Here, we show that freeze-casting of GO nanosheets with silk fibroin results in a highly water-stable, mechanically robust aerogel, with considerably enhanced properties relative to silk-only or silk-MXene aerogels. These silk-GO aerogels exhibit high contact angles with water and are highly water stable. Moreover, aerogels can adsorb up 25-35 times their mass in oil, and can be used robustly for selective oil separation from water. This increased stability may occur due to strengthened intermolecular interactions such as hydrogen bonding, despite the random coil and α-helix conformation of silk fibroin, which is typically more soluble in water. Finally, we show these aerogels can be prepared at scale by freeze-casting on a copper mesh. Ultimately, we envision that these multicomponent aerogels could be widely utilized for molecular separations and environmental sensing, as well as for thermal insulation and electrical conductivity.

2.
J Mater Chem B ; 7(41): 6293-6309, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31460549

RESUMO

Atomically thin nanomaterials represent a unique paradigm for interfacing with biological systems due to their mechanical flexibility, exceptional interfacial area, and ease of chemical functionalization. In particular, these two-dimensional (2D) materials are able to bend, curve, and fold in response to biologically-generated forces or other external stimuli. Such origami-like folding of 2D materials into wrinkled or crumpled topographies allows them to withstand large deformations by accordion-like unfolding, with implications for stretchable and shape-changing devices. Here, we review how mechanically manipulated 2D materials can interact with biological systems across a multitude of length scales. We focus on recent work where wrinkling, crumpling, or bending of 2D materials permits new chemical and material properties, with four case studies: (i) programming biomolecular reactivity and enhanced sensing, (ii) directed adhesion and encapsulation of bacteria or mammalian cells, (iii) stimuli-responsive actuators and soft robotics, and (iv) stretchable barrier technologies and wearable human-scale sensors. Finally, we consider future directions for manufacturing, materials and systems integration, as well as biocompatibility. Taken together, these 2D materials may enable new avenues for ultrasensitive molecular detection, biomaterial scaffolds, soft machines, and wearable technologies.


Assuntos
Engenharia/métodos , Fenômenos Mecânicos , Nanoestruturas , Maleabilidade , Robótica , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA