Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815874

RESUMO

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Memória Imunológica , COVID-19/prevenção & controle , Tecido Linfoide , Vacinação , RNA Mensageiro , Anticorpos Antivirais
2.
Ann Neurol ; 56(3): 351-60, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15349862

RESUMO

Neurotoxicity of anticancer agents complicates treatment of children with cancer. We investigated neurotoxic effects of common cytotoxic drugs in neuronal cultures and in the developing rat brain. When neurons were exposed to cisplatin (5-100 microM), cyclophosphamide (5-100 microM), methotrexate (5-100 microM), vinblastin (0.1-1 microM), or thiotepa (5-100 microM), a concentration-dependent neurotoxic effect was observed. Neurotoxicity was potentiated by nontoxic glutamate concentrations. The N-methyl-D-aspartate receptor antagonist MK 801 (10 microM), the AMPA receptor antagonists GYKI 52466 (10 microM) and NBQX (10 microM), and the pancaspase inhibitor Ac-DEVD-CHO (1 nM) ameliorated neurotoxicity of cytotoxic drugs. To investigate neurotoxicity in vivo, we administered to 7-day-old rats the following: cisplatin (5-15 mg/kg i.p.), cyclophosphamide (200-600 mg/kg i.p.), thiotepa (15-45 mg/kg), or ifosfamide (100-500 mg/kg) and their brains were analyzed at 4 to 24 hours. Cytotoxic drugs produced widespread lesions within cortex, thalamus, hippocampal dentate gyrus, and caudate nucleus in a dose-dependent fashion. Early histological analysis demonstrated dendritic swelling and relative preservation of axonal terminals, which are morphological features indicating excitotoxicity. After longer survival periods, degenerating neurons displayed morphological features consistent with active cell death. These results demonstrate that anticancer drugs are potent neurotoxins in vitro and in vivo; they activate excitotoxic mechanisms but also trigger active neuronal death.


Assuntos
Antineoplásicos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/patologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA