Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 40(1): 25-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25499868

RESUMO

Nuclear receptors (NRs) are key players in the regulation of gene expression, coordinating protein assemblies upon their surfaces. NRs are regulated by ligand binding, which remodels the interaction surfaces and subsequently influences macromolecular complex formation. Structural biology has been instrumental in the discovery of some of these ligands, but there are still orphan NRs (ONRs) whose bona fide ligands have yet to be identified. Over the past decade, fundamental structural and functional breakthroughs have led to a deeper understanding of ONR actions and their multidomain organization. Here, we summarize the structural advances in ONRs with implications for the therapeutic treatment of diseases such as metabolic syndrome and cancer.


Assuntos
Proteínas de Ligação a DNA/química , Receptores Nucleares Órfãos/química , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligantes , Receptores Nucleares Órfãos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
2.
J Biol Chem ; 285(30): 23285-95, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20484048

RESUMO

The Ca(2+)- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Imagem Molecular/métodos , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Animais , Técnicas Biossensoriais , Calcineurina/metabolismo , Sobrevivência Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HeLa , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Fosforilação , Ratos , Reprodutibilidade dos Testes
3.
Mol Cell Endocrinol ; 393(1-2): 75-82, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24911885

RESUMO

The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations. Moreover, substantial efforts have been made in understanding the dynamic processes involved in ligand binding and coregulator recruitment to different NR conformations in order to predict cell/tissue-selective pharmacological outcomes of drugs. They also have improved the accuracy of in silico screening protocols so that nowadays they are becoming part of optimisation protocols for novel therapeutics. Here we summarise the important contributions that computational simulations have made towards understanding the structure/function relationships of NRs and how these can be exploited for rational drug design.


Assuntos
Simulação por Computador , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sítio Alostérico , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA