Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 791066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615130

RESUMO

Rice (Oryza sativa L.) is one of the major cereal crops worldwide with wheat and maize. A total of two field experiments were performed to evaluate the response of some rice cultivars to various foliar zinc (Zn) concentrations based on different measurements, such as agronomic, yield, yield compounds, and grain technological parameters. The experimental layout was a split plot in three replicates; the five rice cultivars (Skaha 101, Giza178, Yasmeen, Fourate, and Amber 33) were distributed in the main plots while the four foliar applications of Zn (1,500, 2,000, 2,500 mg/L besides spray water) were occupied the sub-plots. The findings showed significant differences among the five rice cultivars regarding plant height, grain yield, straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein percentage, and grain Zn content. There is a significant effect of Zn on all plant attributes. A significant interaction between rice cultivars and foliar application of Zn was observed, whereas fertilizing Giza 178 with foliar application of Zn at the rate of 2,500 mg/L achieved the highest mean values of grain yield and straw yield, biological yield, harvest index, 1,000-grain weight, panicle length, protein %, and Zn content followed by Sakha 101 with Zn application at the rate of 2,000 mg/L, respectively, in both seasons. The rice cultivars significantly differed in hulling (%), broken (%), hardness, grain length, shape, amylose (%), gel consistency, and gelatinization temperature. Unfortunately, the commercial Zn product used was genotoxic to pollen grains with a higher rate of Zn. Aberrations were observed such as stickiness, ultrastructural changes in the exterior and interior walls, partially or fully degenerated grains, and shrunken and unfilled grains. This study concluded that using Zn application at the rate of 2,000 mg/L to protect human and environmental health, the side effects and toxicity of the local commercial Zn product market should be investigated before making recommendations to farmers.

2.
Front Plant Sci ; 13: 898846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677237

RESUMO

Ten-year-old lemon (Citrus limon L. cv. Eureka) was used during the 2019 and 2020 seasons to investigate the effect of AgNPs at control, 5, 7.5, and 10 mg/L as a foliar application on vegetative growth, yield, and fruit quality. The selected trees were subjected to agricultural practices applied in the field during the study. The results indicated that the foliar application of AgNPs positively improved the shoot length, total chlorophyll, flower, and fruit set percentage, fruit yield, physical and chemical characteristics of fruits, and leaf mineral composition from macro and micronutrients compared to control in both seasons. The foliar application of AgNPs at 10 mg/L showed the highest mean values followed by 7.5 and 5 mg/L, respectively, for the previous characteristics. The treated leaves and fruit peels were hydrodistillated to extract the essential oils (EOs), and GC-MS analysis of leaf EOs. The analysis of leaves EOs showed the presence of neral, geranial, neryl acetate, and limonene as the main abundant bioactive compounds. While in peel the main compounds were neral, geranial, neryl acetate, D-limonene, geraniol acetate, linalool, and citronellal. Toxin effect of both EOs from leaves and peels were evaluated on the rice weevils (Sitophilus oryzae) and the results indicated a higher effect of lemon peel EOs than leaves based on mortality percentage and the values of LC50 and LC95 mg/L. Melia azedarach wood samples loaded with the produced lemon EOs were evaluated for their antifungal activity against the molecularly identified fungus, Fusarium solani (acc # OL410542). The reduction in mycelial growth was increased gradually with the applied treatments. The most potent activity was found in lemon leaf EOs, while peel EOs showed the lowest reduction values. The mycelial growth reduction percentages reached 72.96 and 52.59%, by 0.1% leaf and peel EOs, respectively, compared with control.

3.
PLoS One ; 17(5): e0267987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605009

RESUMO

Cowpea (Vigna unguiculata) is an important legume which is consumed globally for protein intake, particularly in Asian states. It is a well-known source of dietary fiber, protein, minerals, and vitamins. The cowpea grains are stored after harvest and used till the next harvest. However, the grains are infested by storage pests, primarily Callosobruchus maculatus. Hence, effective management strategies are needed to protect the stored grains form the pests. This study assessed the efficacy of some edible oils in suppressing C. maculatus infestation in stored cowpea grains. Four different botanical oils (i.e., mustard, neem, poppy, and pumpkin) at four different concentrations (i.e., 0.5, 1.0, 1.5 and 2.0 ml per 100 g grain) were included in the study. A control treatment without any botanical oil was also included for comparison. The relevant concentrations of botanical oils were poured into plastic containers containing 100 g cowpea grains and ten C. maculatus adults were released. The jars were sealed and placed at room temperature. Data relating to mortality, oviposition, F1 adult emergence, and seed weight loss were recorded. The tested botanical oils and their concentrations significantly affected mortality after one day. Mortality after 2nd and 3rd days remained unaffected by botanical oils and their different concentrations. The highest mortality was recorded in neem oil-treated grains followed by poppy, pumpkin, and mustard oils. Increased oviposition rate was observed in the grains treated with mustard and pumpkin oils, while those treated with neem and poppy oil recorded decreased oviposition. The control treatment had increased oviposition rate compared to tested botanical oils. All botanical oils significantly inhibited egg laying percentage. The highest germination was recorded for the grains treated with mustard oil followed by pumpkin, poppy, and neem oils, respectively. The lowest germination was recorded for control treatment. Significant differences were noted for C. maculatus repellency among botanical oils. No emergence of adults (F1 progeny) was recorded in all tested botanical oils; thus, F1 progeny was inhibited by 100%. Weight loss, damage percentage, and holes in the grains were not recorded since F1 progeny did not emerge. It is concluded that tested botanical oils are promising and could be utilized to control C. maculatus in cowpea grains during storage.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Vigna , Animais , Feminino , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Óleos , Redução de Peso
4.
Sci Rep ; 11(1): 10205, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986453

RESUMO

The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.


Assuntos
Prunus persica/efeitos dos fármacos , Prunus persica/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Clorofila/metabolismo , Fertilizantes , Florida , Inseticidas/farmacologia , Nanopartículas Metálicas , Extratos Vegetais/metabolismo , Folhas de Planta/efeitos dos fármacos , Pólen/efeitos dos fármacos , Polinização/efeitos dos fármacos , Prata , Árvores/efeitos dos fármacos , Zinco
5.
Nanomaterials (Basel) ; 10(4)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290620

RESUMO

Maize is considered one of the most imperative cereal crops worldwide. In this work, high throughput silica nanoparticles (SiO2-NPs) were prepared via the sol-gel technique. SiO2-NPs were attained in a powder form followed by full analysis using the advanced tools (UV-vis, HR-TEM, SEM, XRD and zeta potential). To this end, SiO2-NPs were applied as both nanofertilizer and pesticide against four common pests that infect the stored maize and cause severe damage to crops. As for nanofertilizers, the response of maize hybrid to mineral NPK, "Nitrogen (N), Phosphorus (P), and Potassium (K)" (0% = untreated, 50% of recommended dose and 100%), with different combinations of SiO2-NPs; (0, 2.5, 5, 10 g/kg soil) was evaluated. Afterward, post-harvest, grains were stored and fumigated with different concentrations of SiO2-NPs (0.0031, 0.0063. 0.25, 0.5, 1.0, 2.0, 2.5, 5, 10 g/kg) in order to identify LC50 and mortality % of four common insects, namely Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, and Orizaephilus surinamenisis. The results revealed that, using the recommended dose of 100%, mineral NPK showed the greatest mean values of plant height, chlorophyll content, yield, its components, and protein (%). By feeding the soil with SiO2-NPs up to 10 g/kg, the best growth and yield enhancement of maize crop is noticed. Mineral NPK interacted with SiO2-NPs, whereas the application of mineral NPK at the rate of 50% with 10 g/kg SiO2-NPs, increased the highest mean values of agronomic characters. Therefore, SiO2-NPs can be applied as a growth promoter, and in the meantime, as strong unconventional pesticides for crops during storage, with a very small and safe dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA