Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Liver Dis ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955211

RESUMO

The liver has the great ability to regenerate after partial resection or injury, and the mechanisms underlying liver regeneration have been extensively investigated. Interestingly, acute liver injuries triggered by various etiologies are associated with the formation of necrotic lesions, and such necrotic lesions are also rapidly resolved. However, how necrotic liver lesions are repaired has not been carefully investigated until recently. In this review, we briefly summarize the spatiotemporal process of necrotic liver lesion resolution in several liver injury models including immune-mediated liver injury and drug-induced liver injury. The roles of liver nonparenchymal cells and infiltrating immune cells in controlling necrotic liver lesion resolution are discussed, which may help identify potential therapies for acute liver injury and failure.

2.
Alcohol Alcohol ; 59(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950904

RESUMO

Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.


Assuntos
Alcoolismo , Humanos , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Etanol/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Desidrogenase/metabolismo , Álcool Desidrogenase , Consumo de Bebidas Alcoólicas/efeitos adversos , Acetaldeído/metabolismo
3.
Gut ; 72(10): 1942-1958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36593103

RESUMO

OBJECTIVE: The current treatment for hepatocellular carcinoma (HCC) to block angiogenesis and immunosuppression provides some benefits only for a subset of patients with HCC, thus optimised therapeutic regimens are unmet needs, which require a thorough understanding of the underlying mechanisms by which tumour cells orchestrate an inflamed tumour microenvironment with significant myeloid cell infiltration. MicroRNA-223 (miR-223) is highly expressed in myeloid cells but its role in regulating tumour microenvironment remains unknown. DESIGN: Wild-type and miR-223 knockout mice were subjected to two mouse models of inflammation-associated HCC induced by injection of diethylnitrosamine (DEN) or orthotopic HCC cell implantation in chronic carbon tetrachloride (CCl4)-treated mice. RESULTS: Genetic deletion of miR-223 markedly exacerbated tumourigenesis in inflammation-associated HCC. Compared with wild-type mice, miR-223 knockout mice had more infiltrated programmed cell death 1 (PD-1+) T cells and programmed cell death ligand 1 (PD-L1+) macrophages after DEN+CCl4 administration. Bioinformatic analyses of RNA sequencing data revealed a strong correlation between miR-223 levels and tumour hypoxia, a condition that is well-documented to regulate PD-1/PD-L1. In vivo and in vitro mechanistic studies demonstrated that miR-223 did not directly target PD-1 and PD-L1 in immune cells rather than indirectly downregulated them by modulating tumour microenvironment via the suppression of hypoxia-inducible factor 1α-driven CD39/CD73-adenosine pathway in HCC. Moreover, gene delivery of miR-223 via adenovirus inhibited angiogenesis and hypoxia-mediated PD-1/PD-L1 activation in both HCC models, thereby hindering HCC progression. CONCLUSION: The miR-223 plays a critical role in modulating hypoxia-induced tumour immunosuppression and angiogenesis, which may serve as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Terapia de Imunossupressão , Carcinogênese , Camundongos Knockout , MicroRNAs/genética , Inflamação , Hipóxia , Microambiente Tumoral
4.
Alcohol Clin Exp Res ; 46(12): 2163-2176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224745

RESUMO

BACKGROUND: The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS: We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS: Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION: Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Etanol/farmacologia , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Gut ; 70(4): 784-795, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127832

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.


Assuntos
Hepatopatias/genética , MicroRNAs/fisiologia , Biomarcadores/metabolismo , Comunicação Celular/fisiologia , Diagnóstico Precoce , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Humanos , Prognóstico
6.
J Hepatol ; 75(1): 163-176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610678

RESUMO

BACKGROUND & AIMS: Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. METHODS: Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. RESULTS: Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. CONCLUSIONS: IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. LAY SUMMARY: Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções Bacterianas , Hepatite Alcoólica , Hepatite , Interleucina-1beta/metabolismo , Interleucinas/metabolismo , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatite/tratamento farmacológico , Hepatite/imunologia , Hepatite/metabolismo , Hepatite Alcoólica/imunologia , Hepatite Alcoólica/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteólise , Regulação para Cima
7.
J Pharmacol Exp Ther ; 376(1): 84-97, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33109619

RESUMO

Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.


Assuntos
Antineoplásicos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Antineoplásicos/farmacologia , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Células Jurkat , Proteína Quinase 1 Ativada por Mitógeno/química , Ligação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/genética
8.
Mol Pharmacol ; 96(3): 345-354, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31436536

RESUMO

Phenobarbital (PB), a broadly used antiseizure drug, was the first to be characterized as an inducer of cytochrome P450 by activation of the constitutive androstane receptor (CAR). Although PB is recognized as a conserved CAR activator among species via a well-documented indirect activation mechanism, conflicting results have been reported regarding PB regulation of the pregnane X receptor (PXR), a sister receptor of CAR, and the underlying mechanisms remain elusive. Here, we show that in a human CAR (hCAR)-knockout (KO) HepaRG cell line, PB significantly induces the expression of CYP2B6 and CYP3A4, two shared target genes of hCAR and human PXR (hPXR). In human primary hepatocytes and hCAR-KO HepaRG cells, PB-induced expression of CYP3A4 was markedly repressed by genetic knockdown or pharmacological inhibition of hPXR. Mechanistically, PB concentration dependently activates hPXR but not its mouse counterpart in cell-based luciferase assays. Mammalian two-hybrid assays demonstrated that PB selectively increases the functional interaction between the steroid receptor coactivator-1 and hPXR but not mouse PXR. Moreover, surface plasmon resonance binding affinity assay showed that PB directly binds to the ligand binding domain of hPXR (KD = 1.42 × 10-05). Structure-activity analysis further revealed that the amino acid tryptophan-299 within the ligand binding pocket of hPXR plays a key role in the agonistic binding of PB and mutation of tryptophan-299 disrupts PB activation of hPXR. Collectively, these data reveal that PB, a selective mouse CAR activator, activates both hCAR and hPXR, and provide novel mechanistic insights for PB-mediated activation of hPXR.


Assuntos
Fenobarbital/farmacologia , Receptor de Pregnano X/química , Receptor de Pregnano X/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Células Cultivadas , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Receptor de Pregnano X/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Especificidade da Espécie , Ressonância de Plasmônio de Superfície , Triptofano/metabolismo
10.
Drug Metab Dispos ; 46(9): 1361-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29759961

RESUMO

Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.


Assuntos
Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Neoplasias/metabolismo , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Xenobióticos/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Receptor Constitutivo de Androstano , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Neoplasias/genética , Neoplasias/patologia , Receptor de Pregnano X/genética , Receptores Citoplasmáticos e Nucleares/genética
11.
Mol Pharmacol ; 92(1): 75-87, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442602

RESUMO

The constitutive androstane receptor (CAR) plays an important role in xenobiotic metabolism, energy homeostasis, and cell proliferation. Antagonism of the CAR represents a key strategy for studying its function and may have potential clinical applications. However, specific human CAR (hCAR) antagonists are limited and conflicting data on the activity of these compounds have been reported. 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a typical peripheral benzodiazepine receptor ligand, has been established as a potent hCAR deactivator in immortalized cells; whether it inhibits hCAR activity under physiologically relevant conditions remains unclear. Here, we investigated the effects of PK11195 on hCAR in metabolically competent human primary hepatocytes (HPH) and HepaRG cells. We show that although PK11195 antagonizes hCAR in HepG2 cells, it induces the expression of CYP2B6 and CYP3A4, targets of hCAR and the pregnane X receptor (PXR), in HPH, HepaRG, and PXR-knockout HepaRG cells. Utilizing a HPH-HepG2 coculture model, we demonstrate that inclusion of HPH converts PK11195 from an antagonist to an agonist of hCAR, and such conversion was attenuated by potent CYP3A4 inhibitor ketoconazole. Metabolically, we show that the N-desmethyl metabolite is responsible for PK11195-mediated hCAR activation by facilitating hCAR interaction with coactivators and enhancing hCAR nuclear translocation in HPHs. Structure-activity analysis revealed that N-demethylation alters the interaction of PK11195 with the binding pocket of hCAR to favor activation. Together, these results indicate that removal of a methyl group switches PK11195 from a potent antagonist of hCAR to an agonist in HPH and highlights the importance of physiologically relevant metabolism when attempting to define the biologic action of small molecules.


Assuntos
Isoquinolinas/química , Isoquinolinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Adulto , Idoso , Criança , Técnicas de Cocultura , Receptor Constitutivo de Androstano , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Isoquinolinas/farmacologia , Masculino , Pessoa de Meia-Idade , Estrutura Secundária de Proteína , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1859(9): 1130-1140, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26877237

RESUMO

The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores de Esteroides/agonistas , Xenobióticos/farmacologia , Animais , Receptor Constitutivo de Androstano , Metabolismo Energético/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Receptor de Pregnano X , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais
13.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299591

RESUMO

Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Humanos , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Etanol , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo
14.
Nat Metab ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902331

RESUMO

Alcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking. Mechanistically, we find that after ethanol intake, a substantial proportion of AcH generated in the liver is excreted via the bile into the gastrointestinal tract where AcH is further metabolized by gut ALDH2. Modulating bile flow significantly affects serum AcH level and drinking behaviour. Thus, combined targeting of liver and gut ALDH2, and manipulation of bile flow and secretion are potential therapeutic strategies to treat AUD.

15.
Alcohol ; 118: 9-16, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38582261

RESUMO

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.


Assuntos
Etanol , Humanos , Alcoolismo/imunologia , Etanol/farmacologia , Etanol/efeitos adversos , Infecções/imunologia
16.
Cell Mol Gastroenterol Hepatol ; 15(2): 281-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36243320

RESUMO

BACKGROUND & AIMS: Binge drinking in patients with metabolic syndrome accelerates the development of alcohol-associated liver disease. However, the underlying mechanisms remain elusive. We investigated if oxidative and nonoxidative alcohol metabolism pathways, diet-induced obesity, and adipose tissues influenced the development of acute liver injury in a single ethanol binge model. METHODS: A single ethanol binge was administered to chow-fed or high-fat diet (HFD)-fed wild-type and genetically modified mice. RESULTS: Oral administration of a single dose of ethanol induced acute liver injury and hepatic endoplasmic reticulum (ER) stress in chow- or HFD-fed mice. Disruption of the Adh1 gene increased blood ethanol concentration and exacerbated acute ethanol-induced ER stress and liver injury in both chow-fed and HFD-fed mice, while disruption of the Aldh2 gene did not affect such hepatic injury despite high blood acetaldehyde levels. Mechanistic studies showed that alcohol, not acetaldehyde, promoted hepatic ER stress, fatty acid synthesis, and increased adipocyte death and lipolysis, contributing to acute liver injury. Increased serum fatty acid ethyl esters (FAEEs), which are formed by an enzyme-mediated esterification of ethanol with fatty acids, were detected in mice after ethanol gavage, with higher levels in Adh1 knockout mice than in wild-type mice. Deletion of the Ces1d gene in mice markedly reduced the acute ethanol-induced increase of blood FAEE levels with a slight but significant reduction of serum aminotransferase levels. CONCLUSIONS: Ethanol and its nonoxidative metabolites, FAEEs, not acetaldehyde, promoted acute alcohol-induced liver injury by inducing ER stress, adipocyte death, and lipolysis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Estresse do Retículo Endoplasmático , Etanol , Lipólise , Animais , Camundongos , Acetaldeído/metabolismo , Adipócitos/metabolismo , Ésteres/metabolismo , Etanol/toxicidade , Ácidos Graxos/metabolismo , Fígado/metabolismo
17.
Int J Biol Sci ; 18(11): 4341-4356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864952

RESUMO

Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Arginina/uso terapêutico , Argininossuccinato Sintase/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/metabolismo , Pirimidinas/uso terapêutico , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Ureia/uso terapêutico
18.
Cell Mol Gastroenterol Hepatol ; 13(1): 151-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34390865

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS: A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS: By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS: E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo/metabolismo , Animais , Selectina E/metabolismo , Humanos , Inflamação/patologia , Lipólise , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
19.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838051

RESUMO

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Animais , Etanol/efeitos adversos , Hepatite Alcoólica/genética , Hepatite Alcoólica/metabolismo , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
20.
Cells ; 9(11)2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233444

RESUMO

Non-Hodgkin's lymphoma (NHL) is a malignant cancer originating in the lymphatic system with a 25-30% mortality rate. CHOP, consisting of cyclophosphamide (CPA), doxorubicin, vincristine, and prednisone, is a first-generation chemotherapy extensively used to treat NHL. However, poor survival rates among patients in advanced stages of NHL shows a need to improve this standard of care treatment. CPA, an integral component of CHOP, is a prodrug that requires CYP2B6-mediated bioactivation to 4-hydroxy-CPA (4-OH-CPA). The expression of CYP2B6 is transcriptionally regulated by the constitutive androstane receptor (CAR, NRi13). We have previously demonstrated that the induction of hepatic CYP2B6 by CITCO, a selective human CAR (hCAR) agonist, results in CHOP's enhanced antineoplastic effects in vitro. Here, we investigate the in vivo potential of CITCO as an adjuvant of CPA-based NHL treatment in a hCAR-transgenic mouse line. Our results demonstrate that the addition of CITCO to the CHOP regimen leads to significant suppression of the growth of EL-4 xenografts in hCAR-transgenic mice accompanied by reduced expression of cyclin-D1, ki67, Pcna, and increased caspase 3 fragmentation in tumor tissues. CITCO robustly induced the expression of cyp2b10 (murine ortholog of CYP2B6) through hCAR activation and increased plasma concentrations of 4-OH-CPA. Comparing to intraperitoneal injection, oral gavage of CITCO results in optimal hepatic cyp2b10 induction. Our in vivo studies have collectively uncovered CITCO as an effective facilitator for CPA-based NHL treatment with a pharmacokinetic profile favoring oral administration, promoting CITCO as a promising adjuvant candidate for CPA-based regimens.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Cromatografia Líquida/métodos , Linfoma/tratamento farmacológico , Espectrometria de Massas/métodos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Prednisona/farmacologia , Prednisona/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA