Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37177061

RESUMO

Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35957140

RESUMO

Recent developments in nanoprinting using focused electron beams have created a need to develop analysis methods for the products of electron-induced fragmentation of different metalorganic compounds. The original approach used here is termed focused-electron-beam-induced mass spectrometry (FEBiMS). FEBiMS enables the investigation of the fragmentation of electron-sensitive materials during irradiation within the typical primary electron beam energy range of a scanning electron microscope (0.5 to 30 keV) and high vacuum range. The method combines a typical scanning electron microscope with an ion-extractor-coupled mass spectrometer setup collecting the charged fragments generated by the focused electron beam when impinging on the substrate material. The FEBiMS of fragments obtained during 10 keV electron irradiation of grains of silver and copper carboxylates and shows that the carboxylate ligand dissociates into many smaller volatile fragments. Furthermore, in situ FEBiMS was performed on carbonyls of ruthenium (solid) and during electron-beam-induced deposition, using tungsten carbonyl (inserted via a gas injection system). Loss of carbonyl ligands was identified as the main channel of dissociation for electron irradiation of these carbonyl compounds. The presented results clearly indicate that FEBiMS analysis can be expanded to organic, inorganic, and metal organic materials used in resist lithography, ice (cryo-)lithography, and focused-electron-beam-induced deposition and becomes, thus, a valuable versatile analysis tool to study both fundamental and process parameters in these nanotechnology fields.

3.
Materials (Basel) ; 14(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201158

RESUMO

In the present study, we have synthesised and characterised newly copper(II) complexes with the general formula [Cu2(NH2(NH=)CC2F5)2(µ-O2CRF)4], where RF = CF3, C2F5, C3F7, C4F9. Infrared spectroscopy, mass spectrometry with electron ionisation (EI MS), and density-functional theory (DFT) calculations were used to confirm compounds' composition and structure. The volatility of the compounds was studied using thermal analysis (TGA), EI MS mass spectrometry, variable temperature infrared spectroscopy (VT IR), and sublimation experiments. Research has revealed that these compounds are the source of metal carriers in the gas phase. The thermal decomposition mechanism over reduced pressure was proposed. TGA studies demonstrated that copper transfer to the gaseous phase occurs even at atmospheric pressure. Two selected complexes [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] and [Cu2(NH2(NH=)CC2F5)2(µ-O2CC3F7)4] were successful used as chemical vapour deposition precursors. Copper films were deposited with an evaporation temperature of 393 K and 453 K, respectively, and a decomposition temperature in the range of 573-633 K without the use of hydrogen. The microscopic observations made to investigate the interaction of the [Cu2(NH2(NH=)CC2F5)2(µ-O2CC2F5)4] with the electron beam showed that the ligands are completely lost under transmission electron microscopy analysis conditions (200 keV), and the final product is copper(II) fluoride. In contrast, the beam energy in scanning electron microscopy (20 keV) was insufficient to break all coordination bonds. It was shown that the Cu-O bond is more sensitive to the electron beam than the Cu-N bond.

4.
Materials (Basel) ; 14(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885612

RESUMO

Copper(II) carboxylate compounds with ethylamine and isopropylamine of the general formula [Cu2(RNH2)2(µ-O2CRf)4], where R = Et, iPr, and Rf = CnF2n+1, n = 1-6, were characterised in the condensed and gas phases by electron impact mass spectrometry (EI MS), IR spectroscopy, and thermal analysis. A mass spectra analysis confirmed the presence of metallated species in the gas phase. Among the observed fragments, the pseudomolecular ions [Cu2(RNH2)2(µ-O2CRf)3]+ were found, which suggests the dimeric structure of the studied complexes with axially N-coordinated ethyl- or isopropylamine molecules and bridging perfluorinated carboxylates. TGA studies demonstrated that copper transfer to the gas phase occurs even under atmospheric pressure. The temperature range of the [Cu2(RNH2)2(µ-O2CRf)4] and other copper carriers detection, observed in variable temperature infrared spectra, depends on the type of amine. The possible mechanisms of the decomposition of the tested compounds are proposed. The copper films were produced without additional reducing agents despite using Cu(II) CVD precursors in the chemical vapor deposition experiments. The layers of the gel-like complexes were fabricated in both spin- and dip-coating experiments, resulting in copper or copper oxide materials when heated. Dinuclear copper(II) carboxylate complexes with ethyl- and isopropylamine [Cu2(RNH2)2(µ-O2CRf)4] can be applied for the formation of metal or metal oxide materials, also in the nanoscale, by vapour and 'wet' deposition methods.

5.
Micromachines (Basel) ; 12(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065297

RESUMO

High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results.

6.
Beilstein J Nanotechnol ; 9: 224-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441267

RESUMO

Focused electron beam induced deposition (FEBID) is a flexible direct-write method to obtain defined structures with a high lateral resolution. In order to use this technique in application fields such as plasmonics, suitable precursors which allow the deposition of desired materials have to be identified. Well known for its plasmonic properties, silver represents an interesting candidate for FEBID. For this purpose the carboxylate complex silver(I) pentafluoropropionate (AgO2CC2F5) was used for the first time in FEBID and resulted in deposits with high silver content of up to 76 atom %. As verified by TEM investigations, the deposited material is composed of pure silver crystallites in a carbon matrix. It showed good electrical properties and a strong Raman signal enhancement. Interestingly, silver crystal growth presents a strong dependency on electron dose and precursor refreshment.

7.
Beilstein J Nanotechnol ; 9: 842-849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600145

RESUMO

Carboxylates constitute an extremely promising class of precursor compounds for the electron beam induced deposition of silver. In this work both silver 2,2-dimethylbutyrate and silver pentafluoropropionate were investigated with respect to their dwell-time-dependent deposition behavior and growth characteristics. While silver 2,2-dimethylbutyrate showed a strong depletion in the center of the impinging electron beam profile hindering any vertical growth, silver pentafluoropropionate indicated a pronounced dependency of the deposit height on the dwell time. Truly three-dimensional silver structures could be realized with silver pentafluoropropionate. The pillars were polycrystalline with silver contents of more than 50 atom % and exhibit strong Raman enhancement. This constitutes a promising route towards the direct electron beam writing of three-dimensional plasmonic device parts from the gas phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA