Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(16): 4070-6, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27406794

RESUMO

Bacterial infections, caused by Mycobacterium tuberculosis and other problematic bacterial pathogens, continue to pose a significant threat to global public health. As such, new chemotype antibacterial agents are desperately needed to fuel and strengthen the antibacterial drug discovery and development pipeline. As part of our antibacterial research program to develop natural product-inspired new antibacterial agents, here we report synthesis, antibacterial evaluation, and structure-activity relationship studies of an extended chemical library of macrocyclic diarylheptanoids with diverse amine, amide, urea, and sulfonamide functionalities. Results of this study have produced macrocyclic geranylamine and 4-fluorophenethylamine substituted derivatives, exhibiting moderate to good activity against M. tuberculosis and selected Gram-positive bacterial pathogens.


Assuntos
Antibacterianos/síntese química , Antituberculosos/síntese química , Heptanos/química , Aminas/química , Antibacterianos/química , Antibacterianos/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Heptanos/síntese química , Heptanos/farmacologia , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Ureia/química
2.
Bioorg Med Chem ; 21(9): 2587-99, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498915

RESUMO

Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea. This series is active against Mycobacteria and previous lead compounds were found to inhibit the membrane transporter MmpL3, the protein responsible for mycolic acid transport across the plasma membrane. However, these compounds suffered from poor in vitro pharmacokinetic (PK) profiles and they have a similar structure/SAR to inhibitors of human soluble epoxide hydrolase (sEH) enzymes. Therefore, in this study the further optimization of this compound class was driven by three factors: (1) to increase selectivity for anti-TB activity over human sEH activity, (2) to optimize PK profiles including solubility and (3) to maintain target inhibition. A new series of 1-adamantyl-3-heteroaryl ureas was designed and synthesized replacing the phenyl substituent of the original series with pyridines, pyrimidines, triazines, oxazoles, isoxazoles, oxadiazoles and pyrazoles. This study produced lead isoxazole, oxadiazole and pyrazole substituted adamantyl ureas with improved in vitro PK profiles, increased selectivity and good anti-TB potencies with sub µg/mL minimum inhibitory concentrations.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Mycobacteriaceae/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Ureia/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Epóxido Hidrolases/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/síntese química , Células Vero
3.
Bioorg Med Chem ; 20(16): 4985-94, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22795901

RESUMO

PlsY is the essential first step in membrane phospholipid synthesis of Gram-positive pathogens. PlsY catalyzes the transfer of the fatty acid from acyl-phosphate to the 1-position of glycerol-3-phosphate to form the first intermediate in membrane biogenesis. A series of non-metabolizable, acyl-sulfamate analogs of the acyl-phosphate PlsY substrate were prepared and evaluated as inhibitors of Staphylococcus aureus PlsY and for their Gram-positive antibacterial activities. From this series phenyl (8-phenyloctanoyl) sulfamate had the best overall profile, selectively inhibiting S. aureus phospholipid biosynthesis and causing the accumulation of both long-chain fatty acids and acyl-acyl carrier protein intermediates demonstrating that PlsY was the primary cellular target. Bacillus anthracis was unique in being more potently inhibited by long chain acyl-sulfamates than other bacterial species. However, it is shown that Bacillus anthracis PlsY is not more sensitive to the acyl-sulfamates than S. aureus PlsY. Metabolic profiling showed that B. anthracis growth inhibition by the acyl-sulfamates was not specific for lipid synthesis illustrating that the amphipathic acyl-sulfamates can also have off-target effects in Gram-positive bacteria. Nonetheless, this study further advances PlsY as a druggable target for the development of novel antibacterial therapeutics, through the discovery and validation of the probe compound phenyl (8-phenyloctanoyl) sulfamate as a S. aureus PlsY inhibitor.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicerol-3-Fosfato O-Aciltransferase/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfônicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus anthracis/enzimologia , Bacillus anthracis/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Fagos de Streptococcus/efeitos dos fármacos , Fagos de Streptococcus/crescimento & desenvolvimento , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química
4.
ACS Omega ; 3(12): 18343-18360, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30613820

RESUMO

A series of novel chalcone and thiol-Michael addition analogues was synthesized and tested against Mycobacterium tuberculosis and other clinically significant bacterial pathogens. Previously reported chalcone-like antibacterials (1a-c and 2) were used as a training set to generate a pharmacophore model. The chalcone derivative hit compound 3 was subsequently identified through a pharmacophore-based virtual screen of the Specs library of >200 000 compounds. Among the newly synthesized chalcones and thiol-Michael addition analogues, chalcones 6r and 6s were active (minimum inhibitory concentrations (MICs) = 1.56-6.25 µg/mL) against Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus [methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)]. The chalcone thiol-Michael addition derivatives 7j-m showed good to excellent antibacterial activities (MICs = 0.78-6.25 µg/mL) against Enterococcus faecalis, B. anthracis, and S. aureus. Interestingly, the amine-Michael addition analogue 12a showed promising anti-MRSA activity (MIC = 1.56 µg/mL) with a selectivity index of 14 toward mammalian Vero cells. In addition, evaluation of selected compounds against biofilm and planktonic S. aureus (MSSA and MRSA) revealed that 12a exhibited bactericidal activities in these assays, which was overall superior to vancomycin. These properties may result from the compounds dissipating the proton motive force of bacterial membranes.

5.
PLoS One ; 11(5): e0154932, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27183222

RESUMO

In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins.


Assuntos
Antifúngicos/farmacologia , Depsipeptídeos/farmacologia , Piperidonas/farmacologia , Compostos de Espiro/farmacologia , Antifúngicos/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/antagonistas & inibidores , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Candida albicans/efeitos dos fármacos , Depsipeptídeos/química , Antagonismo de Drogas , Descoberta de Drogas , Farmacorresistência Fúngica , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidonas/química , Compostos de Espiro/química
6.
Sci Rep ; 4: 4721, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24739957

RESUMO

Whilst the development of membrane-active antibiotics is now an attractive therapeutic concept, progress in this area is disadvantaged by poor knowledge of the structure-activity relationship (SAR) required for optimizing molecules to selectively target bacteria. This prompted us to explore the SAR of the Lactobacillus reuteri membrane-active antibiotic reutericyclin, modifying three key positions about its tetramic acid core. The SAR revealed that lipophilic analogs were generally more active against Gram-positive pathogens, but introduction of polar and charged substituents diminished their activity. This was confirmed by cytometric assays showing that inactive compounds failed to dissipate the membrane potential. Radiolabeled substrate assays indicated that dissipation of the membrane potential by active reutericyclins correlated with inhibition of macromolecular synthesis in cells. However, compounds with good antibacterial activities also showed cytotoxicity against Vero cells and hemolytic activity. Although this study highlights the challenge of optimizing membrane-active antibiotics, it shows that by increasing antibacterial potency the selectivity index could be widened, allowing use of lower non-cytotoxic doses.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Membranas/efeitos dos fármacos , Ácido Tenuazônico/análogos & derivados , Animais , Antibacterianos/química , Chlorocebus aethiops , Humanos , Limosilactobacillus reuteri/química , Membranas/química , Relação Estrutura-Atividade , Ácido Tenuazônico/química , Ácido Tenuazônico/farmacologia , Células Vero
7.
J Med Chem ; 57(20): 8398-420, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25238443

RESUMO

On the basis of recently reported abyssinone II and olympicin A, a series of chemically modified flavonoid phytochemicals were synthesized and evaluated against Mycobacterium tuberculosis and a panel of Gram-positive and -negative bacterial pathogens. Some of the synthesized compounds exhibited good antibacterial activities against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration as low as 0.39 µg/mL. SAR analysis revealed that the 2-hydrophobic substituent and the 4-hydrogen bond donor/acceptor of the 4-chromanone scaffold together with the hydroxy groups at 5- and 7-positions enhanced antibacterial activities; the 2',4'-dihydroxylated A ring and the lipophilic substituted B ring of chalcone derivatives were pharmacophoric elements for antibacterial activities. Mode of action studies performed on selected compounds revealed that they dissipated the bacterial membrane potential, resulting in the inhibition of macromolecular biosynthesis; further studies showed that selected compounds inhibited DNA topoisomerase IV, suggesting complex mechanisms of actions for compounds in this series.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Chalconas/química , Cromonas/química , Floroglucinol/análogos & derivados , Animais , Antibacterianos/síntese química , Técnicas de Química Sintética , Chlorocebus aethiops , DNA Girase , DNA Topoisomerase IV/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Floroglucinol/química , Floroglucinol/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Células Vero/efeitos dos fármacos
8.
PLoS One ; 9(2): e87909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505329

RESUMO

The reductively activated nitroaromatic class of antimicrobials, which include nitroimidazole and the more metabolically labile nitrofuran antitubercular agents, have demonstrated some potential for development as therapeutics against dormant TB bacilli. In previous studies, the pharmacokinetic properties of nitrofuranyl isoxazolines were improved by incorporation of the outer ring elements of the antitubercular nitroimidazole OPC-67683. This successfully increased stability of the resulting pentacyclic nitrofuran lead compound Lee1106 (referred to herein as 9a). In the current study, we report the synthesis and antimicrobial properties of 9a and panel of 9a analogs, which were developed to increase oral bioavailability. These hybrid nitrofurans remained potent inhibitors of Mycobacterium tuberculosis with favorable selectivity indices (>150) and a narrow spectrum of activity. In vivo, the pentacyclic nitrofuran compounds showed long half-lives and high volumes of distribution. Based on pharmacokinetic testing and lack of toxicity in vivo, 9a remained the series lead. 9a exerted a lengthy post antibiotic effect and was highly active against nonreplicating M. tuberculosis grown under hypoxia. 9a showed a low potential for cross resistance to current antitubercular agents, and a mechanism of activation distinct from pre-clinical tuberculosis candidates PA-824 and OPC-67683. Together these studies show that 9a is a nanomolar inhibitor of actively growing as well as nonreplicating M. tuberculosis.


Assuntos
Antituberculosos , Compostos Heterocíclicos de 4 ou mais Anéis , Mycobacterium tuberculosis/metabolismo , Nitrofuranos , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Nitrofuranos/síntese química , Nitrofuranos/química , Nitrofuranos/farmacocinética , Nitrofuranos/farmacologia , Tuberculose/tratamento farmacológico
9.
J Antibiot (Tokyo) ; 66(6): 319-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23549356

RESUMO

The natural product engelhardione is an underexplored chemotype for developing novel treatments for bacterial infections; we therefore explored this natural product scaffold for chemical diversification and structure-activity relationship studies. Macrocyclic engelhardione and structural regioisomers were synthesized using a series of aldol condensations and selective hydrogenations to generate the 1,7-diarylheptan-3-one derivatives, followed by microwave-assisted intramolecular Ullmann coupling to afford a series of macrocyclic diaryl ether analogs. An extended macrocyclic chemical library was then produced by oxime formation, reductive amination and O-alkylation. Antibacterial evaluation revealed that the reductive amination derivatives 7b and 7d showed moderate activities (minimum inhibitory concentrations: 12.5-25 µg ml(-1)) against Mycobacterium tuberculosis and Gram-positive pathogens, as well as anti-Gram-negative activity against an efflux impaired Escherichia coli strain. These results provide validated leads for further optimization and development.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Diarileptanoides/análogos & derivados , Compostos Macrocíclicos/síntese química , Aminação , Aminas/síntese química , Aminas/química , Aminas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antituberculosos/síntese química , Antituberculosos/química , Cromatografia/métodos , Diarileptanoides/química , Diarileptanoides/farmacologia , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Hidrogenação , Isomerismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Oximas/síntese química , Oximas/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA