RESUMO
The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.
Assuntos
Caenorhabditis elegans/fisiologia , Receptores Colinérgicos/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pareamento Cromossômico , Mutação , Sistema Nervoso , Junção Neuromuscular , Plasticidade Neuronal , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Wnt/metabolismoRESUMO
N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors have essential roles in neurotransmission and synaptic plasticity. Previously, we identified an evolutionarily conserved protein, NRAP-1, that is required for NMDA receptor (NMDAR) function in C. elegans. Here, we demonstrate that NRAP-1 was sufficient to gate NMDARs and greatly enhanced glutamate-mediated NMDAR gating, thus conferring coincident activation properties to the NMDAR. Intriguingly, vertebrate NMDARs-and chimeric NMDARs where the amino-terminal domain (ATD) of C. elegans NMDARs was replaced by the ATD from vertebrate receptors-were spontaneously active when ectopically expressed in C. elegans neurons. Thus, the ATD is a primary determinant of NRAP-1- and glutamate-mediated gating of NMDARs. We determined the crystal structure of NRAP-1 at 1.9-Å resolution, which revealed two distinct domains positioned around a central low-density lipoprotein receptor class A domain. The NRAP-1 structure, combined with chimeric and mutational analyses, suggests a model where the three NRAP-1 domains work cooperatively to modify the gating of NMDARs.
Assuntos
Caenorhabditis elegans , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Caenorhabditis elegans/metabolismo , N-Metilaspartato , Transmissão Sináptica , Ácido GlutâmicoRESUMO
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
Assuntos
Proteínas Quinases Ativadas por Mitógeno , Receptores de AMPA , Animais , Caenorhabditis elegans , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Transdução de Sinais , Sinapses/metabolismoRESUMO
Learning and memory are essential processes of both vertebrate and invertebrate nervous systems that allow animals to survive and reproduce. The neurotransmitter glutamate signals via ionotropic glutamate receptors (iGluRs) that have been linked to learning and memory formation; however, the signaling pathways that contribute to these behaviors are still not well understood. We therefore undertook a genetic and electrophysiological analysis of learning and memory in the nematode Caenorhabditis elegans. Here, we show that two genes, nmr-1 and nmr-2, are predicted to encode the subunits of an NMDA-type (NMDAR) iGluR that is necessary for memory retention in C. elegans. We cloned nmr-2, generated a deletion mutation in the gene, and showed that like nmr-1, nmr-2 is required for in vivo NMDA-gated currents. Using an associative-learning paradigm that pairs starvation with the attractant NaCl, we also showed that the memory of a learned avoidance response is dependent on NMR-1 and NMR-2 and that expression of NMDARs in a single pair of interneurons is sufficient for normal memory. Our results provide new insights into the molecular and cellular mechanisms underlying the memory of a learned event.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Memória , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Aprendizagem por Associação , Aprendizagem da Esquiva , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Quimiotaxia , Alimentos , Interneurônios/metabolismo , Dados de Sequência Molecular , Mutação , Receptores de N-Metil-D-Aspartato/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , InaniçãoRESUMO
Ionotropic glutamate receptors (iGluRs) mediate most excitatory synaptic signalling between neurons. Binding of the neurotransmitter glutamate causes a conformational change in these receptors that gates open a transmembrane pore through which ions can pass. The gating of iGluRs is crucially dependent on a conserved amino acid that was first identified in the 'lurcher' ataxic mouse. Through a screen for modifiers of iGluR function in a transgenic strain of Caenorhabditis elegans expressing a GLR-1 subunit containing the lurcher mutation, we identify suppressor of lurcher (sol-1). This gene encodes a transmembrane protein that is predicted to contain four extracellular beta-barrel-forming domains known as CUB domains. SOL-1 and GLR-1 are colocalized at the cell surface and can be co-immunoprecipitated. By recording from neurons expressing GLR-1, we show that SOL-1 is an accessory protein that is selectively required for glutamate-gated currents. We propose that SOL-1 participates in the gating of non-NMDA (N-methyl-D-aspartate) iGluRs, thereby providing a previously unknown mechanism of regulation for this important class of neurotransmitter receptor.
Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Receptores de Glutamato/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Condutividade Elétrica , Ácido Glutâmico/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Estrutura Terciária de Proteína , Receptores de AMPARESUMO
Nicotinic (cholinergic) neurotransmission plays a critical role in the vertebrate nervous system, underlies nicotine addiction, and nicotinic receptor dysfunction leads to neurological disorders. The C. elegans neuromuscular junction (NMJ) shares many characteristics with neuronal synapses, including multiple classes of postsynaptic currents. Here, we identify two genes required for the major excitatory current found at the C. elegans NMJ: acr-16, which encodes a nicotinic AChR subunit homologous to the vertebrate alpha7 subunit, and cam-1, which encodes a Ror receptor tyrosine kinase. acr-16 mutants lack fast cholinergic current at the NMJ and exhibit synthetic behavioral deficits with other known AChR mutants. In cam-1 mutants, ACR-16 is mislocalized and ACR-16-dependent currents are disrupted. The postsynaptic deficit in cam-1 mutants is accompanied by alterations in the distribution of cholinergic vesicles and associated synaptic proteins. We hypothesize that CAM-1 contributes to the localization or stabilization of postsynaptic ACR-16 receptors and presynaptic release sites.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Colina/farmacologia , Antagonistas Colinérgicos/farmacologia , Diagnóstico por Imagem , Di-Hidro-beta-Eritroidina/farmacologia , Estimulação Elétrica/métodos , Regulação da Expressão Gênica/genética , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Levamisol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/efeitos da radiação , Microscopia Eletrônica de Transmissão/métodos , Biologia Molecular , Movimento/fisiologia , Músculos/efeitos dos fármacos , Músculos/fisiologia , Mutagênese , Mutação , Junção Neuromuscular/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Técnicas de Patch-Clamp/métodos , RNA Interferente Pequeno , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , Transativadores/farmacologia , Ácido gama-Aminobutírico/metabolismoRESUMO
The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms defective for non-NMDA (GLR-1 and GLR-2) and NMDA (NMR-1) receptor subunits, we show that while the osmotic avoidance response requires both NMDA and non-NMDA receptors, the response to mechanical stimuli only requires non-NMDA receptors. Furthermore, analysis of the EGL-3 proprotein convertase provides additional evidence that polymodal signaling in C. elegans occurs via the differential activation of postsynaptic glutamate receptor subtypes.
Assuntos
Caenorhabditis elegans/fisiologia , Neurônios Aferentes/metabolismo , Estimulação Física , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estimulação Química , Sequência de Aminoácidos , Animais , Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cátions/metabolismo , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ativação do Canal Iônico/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , N-Metilaspartato/farmacologia , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologiaRESUMO
C. elegans OSM-9 is a TRPV channel protein involved in sensory transduction and adaptation. Here, we show that distinct sensory functions arise from different combinations of OSM-9 and related OCR TRPV proteins. Both OSM-9 and OCR-2 are essential for several forms of sensory transduction, including olfaction, osmosensation, mechanosensation, and chemosensation. In neurons that express both OSM-9 and OCR-2, tagged OCR-2 and OSM-9 proteins reside in sensory cilia and promote each other's localization to cilia. In neurons that express only OSM-9, tagged OSM-9 protein resides in the cell body and acts in sensory adaptation rather than sensory transduction. Thus, alternative combinations of TRPV proteins may direct different functions in distinct subcellular locations. Animals expressing the mammalian TRPV1 (VR1) channel in ASH nociceptor neurons avoid the TRPV1 ligand capsaicin, allowing selective, drug-inducible activation of a specific behavior.
Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/isolamento & purificação , Canais Iônicos/metabolismo , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Sensação/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Capsaicina/farmacologia , Compartimento Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Regulação da Expressão Gênica/fisiologia , Canais Iônicos/genética , Canais Iônicos/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/ultraestrutura , Sistema Nervoso/citologia , Sistema Nervoso/efeitos dos fármacos , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Dor/genética , Dor/metabolismo , Dor/fisiopatologia , Filogenia , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/metabolismo , Receptores de Droga/ultraestrutura , Sensação/efeitos dos fármacos , Transdução de Sinais/genética , Canais de Cátion TRPV , Canais de Potencial de Receptor TransitórioRESUMO
NMDA receptors (NMDARs) are a subtype of postsynaptic ionotropic glutamate receptors that function as molecular coincidence detectors, have critical roles in models of learning, and are associated with a variety of neurological and psychiatric disorders. To date, no auxiliary proteins that modify NMDARs have been identified. Here, we report the identification of NRAP-1, an auxiliary protein in C. elegans that modulates NMDAR function. NMDAR-mediated currents were eliminated in nrap-1 mutants, as was NMDA-dependent behavior. We show that reconstitution of NMDA-gated current in Xenopus oocytes, or C. elegans muscle cells, depends on NRAP-1 and that recombinant NRAP-1 can convert silent NMDARs to functional channels. Our data indicate that NRAP-1, secreted from presynaptic neurons, localizes to glutamatergic synapses, where it associates with postsynaptic NMDARs to modify receptor gating. Thus, our studies reveal a novel mechanism for synaptic regulation via pre-synaptic control of NMDAR-mediated synaptic transmission.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Interneurônios/citologia , Proteínas de Membrana/genética , Movimento/fisiologia , Proteínas Nucleares/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica/genética , Ácido Glutâmico/farmacologia , Interneurônios/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Proteínas de Membrana/efeitos dos fármacos , Movimento/efeitos dos fármacos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Mutação/genética , N-Metilaspartato/farmacologia , Proteínas Nucleares/genética , Oócitos , Proteínas de Ligação a RNA , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/efeitos dos fármacos , Sinapses/genética , XenopusRESUMO
Excitatory glutamatergic synaptic transmission is critically dependent on maintaining an optimal number of postsynaptic AMPA receptors (AMPARs) at each synapse of a given neuron. Here, we show that presynaptic activity, postsynaptic potential, voltage-gated calcium channels (VGCCs) and UNC-43, the C. elegans homolog of CaMKII, control synaptic strength by regulating motor-driven AMPAR transport. Genetic mutations in unc-43, or spatially and temporally restricted inactivation of UNC-43/CaMKII, revealed its essential roles in the transport of AMPARs from the cell body and in the insertion and removal of synaptic AMPARs. We found that an essential target of UNC-43/CaMKII is kinesin light chain and that mouse CaMKII rescued unc-43 mutants, suggesting conservation of function. Transient expression of UNC-43/CaMKII in adults rescued the transport defects, while optogenetic stimulation of select synapses revealed CaMKII's role in activity-dependent plasticity. Our results demonstrate unanticipated, fundamentally important roles for UNC-43/CaMKII in the regulation of synaptic strength.
Assuntos
Caenorhabditis elegans/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cinesinas/metabolismo , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Receptores de Glutamato/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Mutação , Plasticidade Neuronal/genética , Técnicas de Patch-Clamp , Sinapses/fisiologiaRESUMO
A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/fisiologia , Cinesinas/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cicloeximida/farmacologia , Ácido Glutâmico/farmacologia , Cinesinas/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação , Receptores de AMPA/efeitos dos fármacosRESUMO
The strength of synaptic communication at central synapses depends on the number of ionotropic glutamate receptors, particularly the class gated by the agonist AMPA (AMPARs). Cornichon proteins, evolutionarily conserved endoplasmic reticulum cargo adaptors, modify the properties of vertebrate AMPARs when coexpressed in heterologous cells. However, the contribution of cornichons to behavior and in vivo nervous system function has yet to be determined. Here, we take a genetic approach to these questions by studying CNI-1--the sole cornichon homolog in C. elegans. cni-1 mutants hyperreverse, a phenotype associated with increased glutamatergic synaptic transmission. Consistent with this behavior, we find larger glutamate-gated currents in cni-1 mutants with a corresponding increase in AMPAR number. Furthermore, we observe opposite phenotypes in transgenic worms that overexpress CNI-1 or vertebrate homologs. In reconstitution studies, we provide support for an evolutionarily conserved role for cornichons in regulating the export of vertebrate and invertebrate AMPARs.
Assuntos
Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/fisiologia , Receptores de AMPA/agonistas , Receptores de AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismoRESUMO
The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Lipoproteínas LDL/fisiologia , Proteínas de Membrana/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Células HEK293 , Humanos , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Oócitos , Estrutura Terciária de Proteína/fisiologia , Receptores de N-Metil-D-Aspartato , Transmissão Sináptica/fisiologia , Xenopus laevisRESUMO
BACKGROUND: Ionotropic glutamate receptors (iGluRs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the central nervous system. Based on both molecular and pharmacological criteria, iGluRs have been divided into two major classes, the non-NMDA class, which includes both AMPA and kainate subtypes of receptors, and the NMDA class. One evolutionarily conserved feature of iGluRs is their desensitization in the continued presence of glutamate. Thus, when in a desensitized state, iGluRs can be bound to glutamate, yet the channel remains closed. However, the relevance of desensitization to nervous system function has remained enigmatic. RESULTS: Here, we report the identification and characterization of a novel polypeptide (con-ikot-ikot) from the venom of a predatory marine snail Conus striatus that specifically disrupts the desensitization of AMPA receptors (AMPARs). The stoichiometry of con-ikot-ikot appears reminiscent of the proposed subunit organization of AMPARs, i.e., a dimer of dimers, suggesting that it acts as a molecular four-legged clamp that holds the AMPAR channel open. Application of con-ikot-ikot to hippocampal slices caused a large and rapid increase in resting AMPAR-mediated current leading to neuronal death. CONCLUSIONS: Our findings provide insight into the mechanisms that regulate receptor desensitization and demonstrate that in the arms race between prey and predators, evolution has selected for a toxin that blocks AMPAR desensitization, thus revealing the fundamental importance of desensitization for regulating neural function.
Assuntos
Caramujo Conus/metabolismo , Venenos de Moluscos/química , Neurotoxinas/farmacologia , Peptídeos/farmacologia , Receptores de AMPA/metabolismo , Animais , Benzotiadiazinas/farmacologia , Sítios de Ligação , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Caramujo Conus/química , Dimerização , Condutividade Elétrica , Hipocampo/efeitos dos fármacos , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/isolamento & purificação , Ratos , Receptores de AMPA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , XenopusRESUMO
Small, high-impedance neurons with short processes, similar to those found in the soil nematode Caenorhabditis elegans, are predicted to transmit electrical signals by passive propagation. However, we have found that certain neurons in C. elegans fire regenerative action potentials. These neurons resembled Schmitt triggers, as their potential state appears to be bistable. Transitions between up and down states could be triggered by application of the neurotransmitter glutamate or brief current pulses.
Assuntos
Potenciais de Ação/fisiologia , Caenorhabditis elegans/fisiologia , Condução Nervosa/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Estimulação Elétrica , Retroalimentação/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Íons/metabolismo , Condução Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sódio/metabolismo , Estimulação QuímicaRESUMO
Neurotransmission in the brain is critically dependent on excitatory synaptic signaling mediated by AMPA-class ionotropic glutamate receptors (AMPARs). AMPARs are known to be associated with Transmembrane AMPA receptor Regulatory Proteins (TARPs). In vertebrates, at least four TARPs appear to have redundant roles as obligate chaperones for AMPARs, thus greatly complicating analysis of TARP participation in synaptic function. We have overcome this limitation by identifying and mutating the essential set of TARPs in C. elegans (STG-1 and STG-2). In TARP mutants, AMPAR-mediated currents and worm behaviors are selectively disrupted despite apparently normal surface expression and clustering of the receptors. Reconstitution experiments indicate that both STG-1 and STG-2 can functionally substitute for vertebrate TARPs to modify receptor function. Thus, we show that TARPs are obligate auxiliary subunits for AMPARs with a primary, evolutionarily conserved functional role in the modification of current kinetics.
Assuntos
Aprendizagem da Esquiva/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cálcio/metabolismo , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Canais de Cálcio/genética , Evolução Molecular , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência do Ácido NucleicoRESUMO
The neurotransmitter glutamate mediates excitatory synaptic transmission by activating ionotropic glutamate receptors (iGluRs). In Caenorhabditis elegans, the GLR-1 receptor subunit is required for glutamate-gated current in a subset of interneurons that control avoidance behaviors. Current mediated by GLR-1-containing iGluRs depends on SOL-1, a transmembrane CUB-domain protein that immunoprecipitates with GLR-1. We have found that reconstitution of glutamate-gated current in heterologous cells depends on three proteins, STG-1 (a C. elegans stargazin-like protein), SOL-1, and GLR-1. Here, we use genetic and pharmacological perturbations along with rapid perfusion electrophysiological techniques to demonstrate that SOL-1 functions to slow the rate and limit the extent of receptor desensitization as well as to enhance the recovery from desensitization. We have also identified a SOL-1 homologue from Drosophila and show that Dro SOL1 has a conserved function in promoting C. elegans glutamate-gated currents. SOL-1 homologues may play critical roles in regulating glutamatergic neurotransmission in more complex nervous systems.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Sequência Conservada , Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Receptores de AMPA/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Canais de Cálcio/química , Canais de Cálcio/genética , Células Cultivadas , Concanavalina A/metabolismo , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Receptores de AMPA/genética , Receptores de AMPA/fisiologiaRESUMO
Most rapid excitatory synaptic signaling in the brain is mediated by postsynaptic ionotropic glutamate receptors (iGluRs) that are gated open by the neurotransmitter glutamate. In Caenorhabditis elegans, sol-1 encodes a CUB-domain transmembrane protein that is required for currents that are mediated by the GLR-1 iGluR. Mutations in sol-1 do not affect GLR-1 expression, localization, membrane insertion, or stabilization at synapses, suggesting that SOL-1 is required for iGluR function. Here, we provide evidence that SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 receptors. We show that mutant variants of GLR-1 with altered gating partially restore glutamate-gated current and GLR-1-dependent behaviors in sol-1 mutants. Domain analysis of SOL-1 indicates that extracellular CUB domain 3 is required for function and that a secreted variant partially restores glutamate-gated currents and behavior. Also, we show that endogenous glutamatergic synaptic currents are absent in sol-1 mutants. Our data suggest that GLR-1 iGluRs are not simply stand-alone molecules and require the SOL-1 auxiliary protein to promote the open state of the receptor. Our analysis presents the possibility that glutamatergic signaling in other organisms may be similarly modified by SOL-1-like transmembrane proteins.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Receptores de AMPA/fisiologia , Animais , Comportamento Animal , Caenorhabditis elegans , Membrana Celular/metabolismo , Eletrofisiologia , Variação Genética , Ácido Glutâmico/química , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Cinética , Ligantes , Proteínas de Membrana/química , Modelos Genéticos , Mutação , Oócitos/metabolismo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Receptores de Glutamato/metabolismo , Transdução de Sinais , Transmissão Sináptica , Fatores de Tempo , XenopusRESUMO
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) are a major subtype of ionotropic glutamate receptors (iGluRs) that mediate rapid excitatory synaptic transmission in the vertebrate brain. Putative AMPARs are also expressed in the nervous system of invertebrates. In Caenorhabditis elegans, the GLR-1 receptor subunit is expressed in neural circuits that mediate avoidance behaviors and is required for glutamate-gated current in the AVA and AVD interneurons. Glutamate-gated currents can be recorded from heterologous cells that express vertebrate AMPARs; however, when C. elegans GLR-1 is expressed in heterologous cells, little or no glutamate-gated current is detected. This finding suggests that other receptor subunits or auxiliary proteins are required for function. Here, we identify Ce STG-1, a C. elegans stargazin-like protein, and show that expression of Ce STG-1 together with GLR-1 and the CUB-domain protein SOL-1 reconstitutes glutamate-gated currents in Xenopus oocytes. Ce STG-1 and homologues cloned from Drosophila (Dro STG1) and Apis mellifera (Apis STG1) have evolutionarily conserved functions and can partially substitute for one another to reconstitute glutamate-gated currents from rat, Drosophila, and C. elegans. Furthermore, we show that Ce STG-1 and Apis STG1 are primarily required for function independent of possible roles in promoting the surface expression of invertebrate AMPARs.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Canais de Cálcio/fisiologia , Proteínas de Insetos/fisiologia , Receptores de AMPA/fisiologia , Sequência de Aminoácidos , Animais , Abelhas/genética , Abelhas/fisiologia , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Linhagem Celular , Humanos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Dados de Sequência Molecular , Oócitos/metabolismo , XenopusRESUMO
Glutamate receptors are not only abundant and important mediators of fast excitatory synaptic transmission in vertebrates, but they also serve a similar function in invertebrates such as Drosophila and the nematode Caenorhabditis elegans. In C. elegans, an animal with only 302 neurons, 10 different glutamate receptor subunits have been identified and cloned. To study the ion channel properties of these receptor subunits, we recorded glutamate-gated currents from Xenopus oocytes that expressed either C. elegans glutamate receptor subunits or chimeric rat/C. elegans glutamate receptor subunits. The chimeras were constructed between the C. elegans glutamate receptor pore domains and either the rat kainate receptor subunit GluR6, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunit GluR1, or the N-methyl-d-aspartate (NMDA) receptor subunit NMDAR1-1a. Although native subunits were nonfunctional, 9 of 10 ion pores were found to conduct current upon transplantation into rat receptor subunits. A provisional classification of the C. elegans glutamate receptor subunits was attempted based on functionality of the chimeras. C. elegans glutamate receptor ion pores, at a position homologous to a highly conserved site critical for ion permeation properties in vertebrate glutamate receptor pores, contain amino acids not found in vertebrate glutamate receptors. We show that the pore-constricting Q/R site, which in vertebrate receptors determines calcium permeability and rectification properties of the ion channel, in C. elegans can be occupied by other amino acids, including, surprisingly, lysine and proline, without loss of these properties.