Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959811

RESUMO

Current demands for the development of suitable biocatalysts showing high process performance is stimulated by the need to replace current chemical synthesis with cleaner alternatives. A drawback to the use of biocatalysts for unique applications is their low performance in industrial conditions. Hence, enzymes with improved performance are needed to achieve innovative and sustainable biocatalysis. In this study, we report the improved performance of an engineered acetyl xylan esterase (BaAXE) in a hydrophilic organic solvent. The structure of BaAXE was partitioned into a substrate-binding region and a solvent-affecting region. Using a rational design approach, charged residues were introduced at protein surfaces in the solvent-affecting region. Two sites present in the solvent-affecting region, A12D and Q143E, were selected for site-directed mutagenesis, which generated the mutants MUT12, MUT143 and MUT12-143. The mutants MUT12 and MUT143 reported lower Km (0.29 mM and 0.27 mM, respectively) compared to the wildtype (0.41 mM). The performance of the mutants in organic solvents was assessed after enzyme incubation in various strengths of alcohols. The mutants showed improved activity and stability compared to the wild type in low strengths of ethanol and methanol. However, the activity of MUT143 was lost in 40% methanol while MUT12 and MUT12-143 retained over 70% residual activity in this environment. Computational analysis links the improved performance of MUT12 and MUT12-143 to novel intermolecular interactions that are absent in MUT143. This work supports the rationale for protein engineering to augment the characteristics of wild-type proteins and provides more insight into the role of charged residues in conferring stability.


Assuntos
Álcoois , Metanol , Metanol/química , Mutagênese Sítio-Dirigida , Solventes/química , Estabilidade Enzimática
2.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566348

RESUMO

Acetyl xylan esterases (AXEs) are enzymes capable of hydrolysing the acetyl bonds in acetylated xylan, allowing for enhanced activity of backbone-depolymerizing enzymes. Bioprospecting novel AXE is essential in designing enzyme cocktails with desired characteristics targeting the complete breakdown of lignocellulose. In this article, we report the characterisation of a novel AXE identified as Gene_id_40363 in the metagenomic library analysed from the gut microbiota of the common black slug. The conserved domain description was identified with an NCBI BLASTp search using the translated nucleotide sequence as a query. The activity of the recombinant enzyme was tested on various synthetic substrates and acetylated substrates. The protein sequence matched the conserved domain described as putative hydrolase and aligned closely to an uncharacterized esterase from Buttiauxella agrestis, hence the designation as BaAXE. BaAXE showed low sequence similarity among characterized CE family proteins with an available 3D structure. BaAXE was active on 4-nitrophenyl acetate, reporting a specific activity of 78.12 U/mg and a Km value of 0.43 mM. The enzyme showed optimal activity at 40 °C and pH 8 and showed high thermal stability, retaining over 40% activity after 2 h of incubation from 40 °C to 100 °C. BaAXE hydrolysed acetyl bonds, releasing acetic acid from acetylated xylan and ß-D-glucose pentaacetate. BaAXE has great potential for biotechnological applications harnessing its unique characteristics. In addition, this proves the possibility of bioprospecting novel enzymes from understudied environments.


Assuntos
Microbioma Gastrointestinal , Gastrópodes , Acetilesterase , Animais , Gastrópodes/metabolismo , Especificidade por Substrato , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA