Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7927): 502-506, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104553

RESUMO

Hund's multiplicity rule states that a higher spin state has a lower energy for a given electronic configuration1. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, as has been consistent with numerous experimental observations over almost a century. Here we report a fluorescent molecule that disobeys Hund's rule and has a negative singlet-triplet energy gap of -11 ± 2 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 µs, which anomalously decrease with decreasing temperature owing to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes (OLEDs) using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating its potential implications for optoelectronic devices, including displays, lighting and lasers.

2.
Proc Natl Acad Sci U S A ; 121(21): e2317781121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758700

RESUMO

Complex networks are pervasive in various fields such as chemistry, biology, and sociology. In chemistry, first-order reaction networks are represented by a set of first-order differential equations, which can be constructed from the underlying energy landscape. However, as the number of nodes increases, it becomes more challenging to understand complex kinetics across different timescales. Hence, how to construct an interpretable, coarse-graining scheme that preserves the underlying timescales of overall reactions is of crucial importance. Here, we develop a scheme to capture the underlying hierarchical subsets of nodes, and a series of coarse-grained (reduced-dimensional) rate equations between the subsets as a function of time resolution from the original reaction network. Each of the coarse-grained representations guarantees to preserve the underlying slow characteristic timescales in the original network. The crux is the construction of a lumping scheme incorporating a similarity measure in deciphering the underlying timescale hierarchy, which does not rely on the assumption of equilibrium. As an illustrative example, we apply the scheme to four-state Markovian models and Claisen rearrangement of allyl vinyl ether (AVE), and demonstrate that the reduced-dimensional representation accurately reproduces not only the slowest but also the faster timescales of overall reactions although other reduction schemes based on equilibrium assumption well reproduce the slowest timescale but fail to reproduce the second-to-fourth slowest timescales with the same accuracy. Our scheme can be applied not only to the reaction networks but also to networks in other fields, which helps us encompass their hierarchical structures of the complex kinetics over timescales.

3.
J Am Chem Soc ; 146(3): 1765-1770, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198593

RESUMO

The oxyboration of arynes was achieved for the first time. A series of 2-aryl-1,3,2-dioxaborolane derivatives were reacted with aryne precursors in the presence of CsF to give the corresponding ring-expanded seven-membered borinic acid esters via selective boron-oxygen bond activation. Preliminary experimental mechanistic studies and density functional theory (DFT) calculations suggest that this unprecedented aryne oxyboration proceeds through the formation of boron ate complexes of arylboronates with CsF, followed by aryne insertion into the boron-oxygen bond.

4.
J Am Chem Soc ; 146(1): 1062-1070, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134051

RESUMO

Radical initiators such as azo compounds and organic peroxides have been widely used to facilitate numerous transformations of free radicals, which enable the efficient synthesis of structurally complex molecules, natural products, polymers, and functional materials. However, these high-energy reagents are potentially explosive and thus often require special precautions or delicate operating conditions. We postulated that a more convenient and safer alternative for radical chain initiation could be developed by mechanical activation of thermodynamically stable covalent bonds. Here, we show that commodity plastics such as polyethylene and poly(vinyl acetate) are capable of acting as efficient initiators for radical chain reactions under solvent-free mechanochemical conditions. In this approach, polymeric mechanoradicals, which are generated by homolytic cleavage of the polymer chains in response to the applied mechanical energy provided by ball milling, react with tris(trimethylsilyl)silane to initiate radical chain dehalogenation of organic halides. Preliminary calculations support our proposed force-induced radical chain mechanism.

5.
J Am Chem Soc ; 146(19): 13336-13346, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697646

RESUMO

In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.

6.
Annu Rev Phys Chem ; 74: 287-311, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36719976

RESUMO

Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.

7.
Phys Chem Chem Phys ; 26(17): 13131-13139, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629236

RESUMO

The reactivity of the reduction of NO pre-adsorbed on Rh2-9+ clusters by CO was investigated using a combination of an alternate on-off gas injection method and thermal desorption spectrometry. The reduction of RhnNxOy+ clusters by CO was evaluated by varying the CO concentration at T = 903 K. Among the RhnNxOx+ clusters, the Rh3N2O2+ cluster exhibited the highest reduction activity, whereas the other clusters, Rh2,4-9NxOx+, showed lower reactivity. Density functional theory (DFT) calculations for Rh3+ and Rh6+ revealed that the rate-determining step for NO reduction in the presence of CO was NO bond dissociation through the kinetics analysis using the RRKM theory. The reduction of Rh3N2O2+ is kinetically preferable to that of Rh6N2O2+. The DFT results were in qualitative agreement with the experimental results.

8.
J Phys Chem A ; 128(14): 2883-2890, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564273

RESUMO

The yield of a chemical reaction is obtained by solving its rate equation. This study introduces an approach for differentiating yields by utilizing the parameters of the rate equation, which is expressed as a first-order linear differential equation. The yield derivative for a specific pair of reactants and products is derived by mathematically expressing the rate constant matrix contraction method, which is a simple kinetic analysis method. The parameters of the rate equation are the Gibbs energies of the intermediates and transition states in the reaction path network used to formulate the rate equation. Thus, our approach for differentiating the yield allows a numerical evaluation of the contribution of energy variation to the yield for each intermediate and transition state in the reaction path network. In other words, a comparison of these values automatically extracts the factors affecting the yield from a complicated reaction path network consisting of numerous reaction paths and intermediates. This study verifies the behavior of the proposed approach through numerical experiments on the reaction path networks of a model system and the Rh-catalyzed hydroformylation reaction. Moreover, the possibility of using this approach for designing ligands in organometallic catalysts is discussed.

9.
J Am Chem Soc ; 145(13): 7376-7389, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952244

RESUMO

Visualization of mechanochemical damages, especially for those in the molecular-scale (e.g., bond scission in polymeric materials), is of great industrial and academic significance. Herein, we report a novel strategy for in situ and real-time visualization of mechanochemical damages in hydrogels by utilizing prefluorescent probes via oxygen-relayed free-radical trapping. Double-network (DN) hydrogels that generate numerous mechanoradicals by homolytic bond scission of the brittle first network at large deformation are used as model materials. Theoretical calculation suggests that mechanoradicals generated by the damage of the first network undergo an oxygen-relayed radical-transfer process which can be detected by the prefluorescent probe through the radical-radical coupling reaction. Such an oxygen-relayed radical-trapping process of the prefluorescent probe exhibits a dramatically enhanced emission, which enables the real-time sensing and visualization of mechanochemical damages in DN hydrogels made from brittle networks of varied chemical structures. To the best of authors' knowledge, this work is the first report utilizing oxygen as a radical-relaying molecule for visualizing mechanoradical damages in polymer materials. Moreover, this new method based on the probe post-loading is simple and does not introduce any chemical structural changes in the materials, outperforming most previous methods that require chemical incorporation of mechanophores into polymer networks.

10.
Inorg Chem ; 62(3): 1210-1217, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626658

RESUMO

Metal-organic frameworks (MOFs) have attracted significant attention over the past 2 decades due to their wide applicability as functional materials. However, targeted synthesis of novel MOFs remains problematic as their formation mechanisms are poorly understood, which forces us to rely on serendipity in the synthesis of novel MOFs. Here, we demonstrate a workflow employing the artificial force induced reaction (AFIR) method to investigate the self-assembly process of the node of the SIFSIX-3-Zn MOF, [Zn(pyz)4(SiF6)2]2- (pyz = pyrazine), in an automated manner. The workflow encompassing AFIR calculations, generation of extensive reaction path networks, propagation simulations of intermediates, and further refinements of identified formation pathways showed that the nodal structure can form through multiple competing pathways involving interconvertible intermediates. This finding provides a plausible rationale for the stochastic multistage processes believed to be key in MOF formation. Furthermore, this work represents the first application of an automated reaction mechanism discovery method to a MOF system using a general workflow that is applicable to study the formation of other MOF motifs as well.


Assuntos
Estruturas Metalorgânicas , Metais , Pirazinas , Zinco
11.
Org Biomol Chem ; 21(15): 3132-3142, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974985

RESUMO

Ligand screening is a crucial step in the development of transition metal catalysis, as it involves identifying the optimal ligand for a particular reaction from a large pool of candidate molecules. Conventionally, this process is performed through an experimental trial-and-error, which can be time-consuming and resource-intensive in many cases. One of the ideal strategies for streamlining this process is a transition state theory (TST)-based approach, which aims to design optimal catalysts that results in the best energy profile for the desired reaction. However, the implementation of TST-based ligand screening remains challenging mainly due to the large number of potential ligands that need to be individually evaluated through quantum chemical calculations. In this study, we experimentally demonstrated a practical TST-based ligand screening in accordance with our virtual ligand-assisted (VLA) screening strategy. As a case study, the electronic anc steric features of phosphine ligands that maximize chemoselectivity in the Suzuki-Miyaura cross-coupling (SMC) reaction of p-chlorophenyl triflate were determined through quantum chemical calculations using virtual ligands, and several phosphine ligands were suggested to exhibit high chemoselectivity. Based on this suggestion, we successfully found that tri(1-adamantyl)phosphine and tri(neopentyl)phosphine show high to excellent selectivity for the C-Cl bond activation. This case study suggests that the VLA screening strategy could be a useful tool for ligand screening.

12.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069242

RESUMO

Mesenchymal stem cells (MSCs) have attracted a great deal of interest as a therapeutic tool for renal fibrosis. Although both adipose-derived and bone marrow-derived MSCs (ADSCs and BMSCs, respectively) suppress renal fibrosis, which of these two has a stronger therapeutic effect remains unclear. This study aimed to compare the antifibrotic effects of ADSCs and BMSCs extracted from adipose tissue and bone marrow derived from the same rats. When cultured in serum-containing medium, ADSCs had a more potent inhibitory effect than BMSCs on renal fibrosis induced by ischemia-reperfusion injury in rats. ADSCs and BMSCs cultured in serum-free medium were equally effective in suppressing renal fibrosis. Mice infused with ADSCs (serum-containing or serum-free cultivation) had a higher death rate from pulmonary embolism than those infused with BMSCs. In vitro, mRNA levels of tissue factor, tumor necrosis factor-α-induced protein 6 and prostaglandin E synthase were higher in ADSCs than in BMSCs, while that of vascular endothelial growth factor was higher in BMSCs than in ADSCs. Although ADSCs had a stronger antifibrotic effect, these findings support the consideration of thromboembolism risk in clinical applications. Our results emphasize the importance of deciding between ADSCs and BMSCs based upon the target disease and culture method.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Ratos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Medula Óssea , Células-Tronco Mesenquimais/metabolismo , Fibrose , Tecido Adiposo/metabolismo , Células da Medula Óssea , Diferenciação Celular
13.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298952

RESUMO

Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.


Assuntos
Redes Neurais de Computação , Cinética , Hidrogenação
14.
Angew Chem Int Ed Engl ; 62(1): e202211936, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336664

RESUMO

Systematic reaction path exploration revealed the entire mechanism of Knowles's light-promoted catalytic intramolecular hydroamination. Bond formation/cleavage competes with single electron transfer (SET) between the catalyst and substrate. These processes are described by adiabatic processes through transition states in an electronic state and non-radiative transitions through the seam of crossings (SX) between different electronic states. This study determined the energetically favorable SET path by introducing a practical computational model representing SET as non-adiabatic transitions via SXs between substrate's potential energy surfaces for different charge states adjusted based on the catalyst's redox potential. Calculations showed that the reduction and proton shuttle process proceeded concertedly. Also, the relative importance of SET paths (giving the product and leading back to the reactant) varies depending on the catalyst's redox potential, affecting the yield.

15.
Angew Chem Int Ed Engl ; 62(23): e202303435, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961369

RESUMO

[1.1.1]Propellane, which is structurally simple and compact, exhibits promising potential for the synthesis of disubstituted straight-shaped bicyclo[1.1.1]pentane (BCP) compounds by manipulation of its highly reactive internal C-C bond. BCPs are considered to be isosteres of 1,4-disubstituted benzenes, which have found broad applications in the areas of functional molecules and drug discovery. The internal C-C single bond of [1.1.1]propellane is regarded as a charge-shift bond, which can be readily cleaved by radical means to construct BCPs. We herein report a novel synthetic method for (un)symmetric diphosphines based on the BCP motif, which can be interpreted as isosteres of 1,4-bis(diphenylphosphino)benzenes. The obtained BCP-diphosphine derivatives were used to generate a straight-shaped Au complex and an Eu-based coordination polymer.

16.
Angew Chem Int Ed Engl ; 62(21): e202301259, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918357

RESUMO

The synthesis, characterization, and catalytic performance of an iridium(III) catalyst with an electron-deficient cyclopentadienyl ligand ([CpE IrI2 ]2 ) are reported. The [CpE IrI2 ]2 catalyst was synthesized by complexation of a precursor of the CpE ligand with [Ir(cod)OAc]2 , followed by oxidation, desilylation, and removal of the COD ligand. The electron-deficient [CpE IrI2 ]2 catalyst enabled C-H amidation reactions assisted by a weakly coordinating ether directing group. Experimental mechanistic studies and DFT calculations suggested that the high catalytic performance of [CpE IrI2 ]2 is due to its electron-deficient nature, which accelerates both C-H activation and IrV -nitrenoid formation.

17.
J Am Chem Soc ; 144(8): 3685-3695, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35189683

RESUMO

The dearomative dicarboxylation of stable heteroaromatics using CO2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO2 radical anion (E1/2 of CO2 = -2.2 V in DMF and -2.3 V in CH3CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (-2.50 to -2.94 V). On the basis of the calculated reduction potentials, N-protected indoles with reduction potentials up to -3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than -3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.


Assuntos
Dióxido de Carbono , Indóis , Ânions , Ácidos Dicarboxílicos , Indóis/química
18.
J Am Chem Soc ; 144(7): 3154-3161, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35148089

RESUMO

Double-network (DN) hydrogels have recently been demonstrated to generate numerous radicals by the homolytic bond scission of the brittle first network under the influence of an external force. The mechanoradicals thus generated can be utilized to trigger polymerization inside the gels, resulting in significant mechanical and functional improvements to the material. Although the concentration of mechanoradicals in DN gels is much higher than that in single-network hydrogels, a further increase in the mechanoradical concentration in DN gels will widen their application. In the present work, we incorporate an azoalkane crosslinker into the first network of DN gels. Compared with the traditional crosslinker N,N'-methylenebis(acrylamide), the azoalkane crosslinker causes a decrease in the yield stress but significantly increases the mechanoradical concentration of DN gels after stretching. In the azoalkane-crosslinked DN gels, the concentration of mechanoradicals can reach a maximum of ∼220 µM, which is 5 times that of the traditional crosslinker. In addition, DN gels with the azoalkane crosslinker show a much higher energy efficiency for mechanoradical generation. Interestingly, DN gels crosslinked by a mixture of azoalkane crosslinker and traditional crosslinker also exhibit excellent radical generation performance. The increase in the mechanoradical concentration accelerates polymerization and can broaden the application range of force-responsive DN gels to biomedical devices and soft robots.

19.
J Am Chem Soc ; 144(50): 22985-23000, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451276

RESUMO

Pericyclic reactions, which involve cyclic concerted transition states without ionic or radical intermediates, have been extensively studied since their definition in the 1960s, and the famous Woodward-Hoffmann rules predict their stereoselectivity and chemoselectivity. Here, we describe the application of a fully automated reaction-path search method, that is, the artificial force induced reaction (AFIR), to trace an input compound back to reasonable starting materials through thermally allowed pericyclic reactions via product-based quantum-chemistry-aided retrosynthetic analysis (QCaRA) without using any a priori experimental knowledge. All categories of pericyclic reactions, including cycloadditions, ene reactions, group-transfer, cheletropic, electrocyclic, and sigmatropic reactions, were successfully traced back via concerted reaction pathways, and starting materials were computationally obtained with the correct stereochemistry. Furthermore, AFIR was used to predict whether the identified reaction pathway can be expected to occur in good yield relative to other possible reactions of the identified starting material. In order to showcase its practical utility, this state-of-the-art technology was also applied to the retrosynthetic analysis of a natural product with a relatively high number of atoms (52 atoms: endiandric acid C methyl ester), which was first synthesized by Nicolaou in 1982 and provided the corresponding starting polyenes with the correct stereospecificity via three pericyclic reaction cascades (one Diels-Alder reaction as well as 6π and 8π electrocyclic reactions). Moreover, not only systems that obey the Woodward-Hoffmann rules but also systems that violate these rules, such as those recently calculated by Houk, can be retrosynthesized accurately.

20.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35196260

RESUMO

Carbon nanotubes (CNTs) exhibit extremely high nanoscopic thermal/electrical transport and mechanical properties. However, the macroscopic properties of assembled CNTs are significantly lower than those of CNTs because of the boundary structure between the CNTs. Therefore, it is crucial to understand the relationship between the nanoscopic boundary structure in CNTs and the macroscopic properties of the assembled CNTs. Previous studies have shown that the nanoscopic phonon transport and macroscopic thermal transport in CNTs are improved by Joule annealing because of the improved boundary Van-der-Waals interactions between CNTs via the graphitization of amorphous carbon. In this study, we investigate the mechanical strength and thermal/electrical transport properties of CNT yarns with and without Joule annealing at various temperatures, analyzing the phenomena occurring at the boundaries of CNTs. The obtained experimental and theoretical results connect the nanoscopic boundary interaction of CNTs in CNT yarns and the macroscopic mechanical and transport properties of CNT yarns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA