Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 20(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35621964

RESUMO

Balenine is one of the endogenous imidazole dipeptides derived from marine products. It is composed of beta-alanine and 3-methyl-L-histidine, which exist mainly in the muscles of marine organisms. The physiological functions of dietary balenine are not well-known. In this study, we investigated whether the supplementation of dietary balenine was associated with muscle function in a cardiotoxin-indued muscle degeneration/regeneration model. Through morphological observation, we found that the supplementation of balenine-enriched extract promoted the regeneration stage. In addition, the expression of regeneration-related myogenic marker genes, such as paired box protein 7, MyoD1, myogenin, and Myh3, in a group of mice fed a balenine-enriched extract diet was higher than that in a group fed a normal diet. Moreover, the supplementation of balenine-enriched extract promoted the expression of anti-inflammatory cytokines as well as pro-inflammatory cytokines at the degeneration stage. Interestingly, phagocytic activity in the balenine group was significantly higher than that in the control group in vitro. These results suggest that balenine may promote the progress of muscle regeneration by increasing the phagocytic activity of macrophages.


Assuntos
Dipeptídeos , Macrófagos , Músculo Esquelético , Fagocitose , Animais , Citocinas/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Imidazóis/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fagocitose/efeitos dos fármacos
2.
Antonie Van Leeuwenhoek ; 99(3): 457-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20862609

RESUMO

The polymorphism of ORFs encoding putative cell-surface adhesins was investigated in Bifidobacterium longum subsp. longum. Firstly, we performed a PCR assay targeting 15 ORFs encoding putative adhesion proteins, which included 8 ORFs with a sortase targeting LPXTG motif, in 42 strains of different pulsotypes isolated from fecal samples from 12 human individuals. We found a variability in the presence of an ORF, BL0675, which encodes a putative fimbrial subunit protein. We sequenced ORFs corresponding to BL0675 in the 42 strains and adjacent ORFs corresponding to BL0674 and BL0676. The results indicated that ORFs corresponding to BL0675 were highly polymorphic with five variant types (i.e. A-, B-, C-, D-, and E-types). Meanwhile, BL0674 and BL0676, which encode an additional putative fimbrial subunit protein and a fimbrial-associated sortase-like protein, were highly conserved. Subsequent quantitative polymerase chain reaction (qPCR) assays targeting the variant types in 89 human fecal samples revealed that A-type was the most commonly distributed (74.2%), followed by B-type (59.6%), D-type (31.5%), E-type (32.6%) and C-type (5.6% prevalence). Since BL0675 is considered to be a fimbrial protein with glycoprotein-binding ability, the proteins encoded by the five variant types of BL0675 may have specific binding properties to various carbohydrate structures expressed on the human intestinal wall, thereby allowing B. longum to colonize the intestine in a host-specific manner.


Assuntos
Bifidobacterium/genética , Fezes/microbiologia , Fases de Leitura Aberta/genética , Polimorfismo Genético/genética , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
3.
Food Chem ; 364: 130343, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246912

RESUMO

Balenine (Bal) in opah muscle was extracted using hot water and purified by ion-exchange chromatography and recrystallization to provide 41 g of over 95% pure Bal from 1 kg of opah muscle. The structure of purified Bal was identical to that of an authentic Bal standard by NMR analysis. The antioxidant (ORAC and HORAC values) and Fe(II) ion-chelating abilities of purified Bal were examined by comparison with two major imidazole dipeptides, carnosine (Car) and anserine (Ans). Opah-derived Bal showed significantly higher ORAC and HORAC values and Fe(II) ion-chelating ability at 0.3 mM. In silico molecular simulation revealed that Bal and Car formed hydrogen bonds between the hydrogen atom of the imidazole imino group and the carboxyl carbonyl oxygen, whereas Ans did not. The proposed method for extracting and purifying Bal from opah muscle suggests that opah can be utilized as a functional food or Bal resource.


Assuntos
Antioxidantes , Carnosina , Dipeptídeos/isolamento & purificação , Músculos/química , Animais , Anserina , Peixes , Imidazóis , Quelantes de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA