Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(51): 10742-10749, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34928159

RESUMO

Herein, we measure the water structure for individual micron-sized droplets of water, salt water, and water containing biologically and marine relevant atmospheric inclusions as a function of temperature. Individual droplets, formed on a hydrophobic substrate, are analyzed with micro-Raman spectroscopy. Analysis of the Raman spectra in the O-H stretching region shows that the equilibrium of partially and fully hydrogen-bonding water interactions change as temperature decreases up until there is a phase transition to form ice. Using these temperature-dependent measurements, the thermodynamic parameters for the interchange between partially and fully hydrogen-bonded water (PHW ⇄ FHW) for different supercooled droplets (water, salt water, and water containing biologically and marine relevant atmospheric inclusions) have been determined.

2.
J Phys Chem A ; 125(44): 9691-9699, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714998

RESUMO

The interaction of water vapor and the water uptake behavior of atmospheric particles are often investigated as a function of relative humidity (0-100% RH) at ambient temperature. However, lower temperature studies are important to understand how atmospheric particles nucleate ice through various mechanisms including immersion freezing. Immersion freezing requires the formation of a condensed water droplet at lower temperatures prior to freezing. To better understand low-temperature water uptake behavior of marine and biologically relevant atmospheric particles, we have investigated water uptake of single atmospheric particles using a micro-Raman spectrometer coupled to an environmental cell for measurements at lower temperatures and as a function of relative humidity. These particles include sodium chloride, sucrose, Snomax, lipopolysaccharide, and laminarin. Particles range in size from 2 to 3 µm in diameter and can be monitored by using optical microscopy and Raman spectroscopy as a function of relative humidity at temperatures between 253 and 298 K. From the Raman spectra collected, we can determine a Raman growth factor defined as an increase in the intensity of the O-H stretch as a measure of the integrated water content of a particle compared to the dry particle. These data show that for lipopolysaccharide, laminarin, and Snomax, unlike simple saccharides such as sucrose and other soluble organics, as temperature decreases, water uptake begins at lower relative humidity and does not follow a solubility temperature dependence. This suggests that at lower temperatures the particles are adsorbing water on the surface rather than dissolving and absorbing water. Furthermore, repeated water uptake cycles cause a change in the morphology of some of these particles, which is shown to promote water uptake at lower relative humidity. These results give new insights into water uptake of these different marine and biologically relevant particles at low temperature at subsaturation relative humidity prior to droplet formation and immersion freezing.


Assuntos
Análise Espectral Raman , Umidade , Solubilidade , Temperatura
3.
Anal Chem ; 91(17): 11138-11145, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31373198

RESUMO

In the atmosphere, there are several different trajectories by which particles can nucleate ice; two of the major pathways are deposition and immersion freezing. Single particle depositional freezing has been widely studied with spectroscopic methods while immersion freezing has been predominantly studied either for particles within bulk aqueous solutions or using optical imaging of single particles. Of the few existing spectroscopic methods that monitor immersion freezing, there are limited opportunities for investigating the impact of heterogeneous chemistry on freezing. Herein, we describe a method that couples a confocal Raman spectrometer with an environmental cell to investigate single particle immersion freezing along with the capability to investigate in situ the impact of heterogeneous reactions with ozone and other trace gases on ice nucleation. This system, which has been rigorously calibrated (temperature and relative humidity) across a large dynamic range, is used to investigate low temperature water uptake and heterogeneous ice nucleation of atmospherically relevant single particles deposited on a substrate. The use of Raman spectroscopy provides important insights into the phase state and chemical composition of ice nuclei and, thus, insights into cloud formation.

4.
Anal Bioanal Chem ; 407(23): 6965-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25863801

RESUMO

The development of novel affinity probes for cancer biomarkers may enable powerful improvements in analytical methods for detecting and treating cancer. In this report, we describe our use of capillary electrophoresis (CE) as the separation mechanism in the process of selecting DNA aptamers with affinity for the ovarian cancer biomarker HE4. Rather than the conventional use of cloning and sequencing as the last step in the aptamer selection process, we used high-throughput sequencing on an Illumina platform. This data-rich approach, combined with a bioinformatics pipeline based on freely available computational tools, enabled the entirety of the selection process-and not only its endpoint-to be characterized. Affinity probe CE and fluorescence anisotropy assays demonstrate the binding affinity of a set of aptamer candidates identified through this bioinformatics approach. Graphical Abstract A population of candidate aptamers is sequenced on an Illumina platform, enabling the process by which aptamers are selected over multiple SELEX rounds to be characterized. Bioinformatics tools are used to identify enrichment of selected aptamers and groupings into clusters based on sequence and structural similarity. A subset of sequenced aptamers may be intelligently chosen for in vitro testing.


Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/isolamento & purificação , Eletroforese Capilar/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Ovarianas/genética , Proteínas/genética , Técnicas de Cultura Celular por Lotes , Cromatografia de Afinidade/métodos , Feminino , Marcadores Genéticos/genética , Humanos , Neoplasias Ovarianas/diagnóstico , Técnica de Seleção de Aptâmeros/métodos , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
5.
J Phys Chem A ; 119(19): 4464-72, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485554

RESUMO

Recent work has suggested that 2-methyl-3-butene-2-ol (MBO)-derived epoxide intermediates are responsible for some of the molecular species commonly found in ambient secondary organic aerosol (SOA). Nuclear magnetic resonance techniques were used to study the reaction kinetics and products of two potential MBO-derived epoxides under acidic solution conditions in the presence of sulfate and nitrate nucleophiles. These epoxides were found to undergo reasonably fast acid-catalyzed reaction at typical SOA acidities and to produce a variety of organosulfate and nitrate species. This finding supports a previous supposition that 3-methylbutane-1,2,3-triol and at least some of the MBO-derived organosulfates previously detected on SOA are formed from the reactions of these epoxides. In general, the particular MBO-derived organosulfates and nitrates produced from MBO-derived epoxides and their respective stability toward hydrolysis were similar to those found for isoprene-derived epoxides; the nucleophilic reactions were observed to be quite regiospecific, and the tertiary addition product species were found to hydrolyze on atmospherically relevant time scales.


Assuntos
Compostos de Epóxi/química , Nitratos/química , Pentanóis/química , Aerossóis/química , Butadienos/química , Hemiterpenos/química , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Pentanos/química , Sulfatos/química , Água/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-39373709

RESUMO

Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOCg) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOCg and total particle phase WSOC (WSOCp)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOCg and WSOCp inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOCg concentrations (215 ± 29 µg-C m-3) were generally 36× higher than WSOCp (6 ± 3 µg-C m-3) and 20× higher than outdoor levels. A building-specific emission factor (Ef) of 31 mg-C h-1 maintained the relatively high house WSOCg background, which was dominated by ethanol (46 µg-C m-3 to 82 µg-C m-3). When we opened the windows, WSOCg decayed slower (2.8 h-1) than the air change rate (21.2 h-1) and Ef increased (243 mg-C h-1). The response (increased Ef) suggests WSOCg concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOCg concentration decay rates from these activities (0.4 h-1 to 4.0 h-1) were greater than the normal operating 0.24 h-1 air change rate, which is consistent with an important role for surface removal.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38953218

RESUMO

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.

8.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35048927

RESUMO

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Assuntos
Atmosfera , Água do Mar , Aerossóis/química , Atmosfera/química , Oceanos e Mares , Fitoplâncton , Água do Mar/química
9.
ACS Cent Sci ; 4(12): 1617-1623, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648145

RESUMO

Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth's climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth's radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods. This integration of approaches will enable the systematic interrogation of the complexity within individual SSA particles at a level that will enable prediction of the physicochemical properties of real-world SSA, ultimately illuminating the detailed mechanisms of how the constituents within individual SSA impact climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA