RESUMO
CD4(+) T cells play critical roles in the generation of protective immunity against a variety of pathogens. The main two types of effector CD4(+) T cells, Th1 and Th2 are characterized by their ability to produce signature cytokines. Among them, IL-10 is a multi-functional cytokine that plays a crucial role in maintaining the balance between immunity and tolerance. Although IL-10 is produced by both differentiated primary Th1 and Th2 cells, Th2 cells produce much higher levels of IL-10 upon stimulation. However, little information is available on the molecular mechanisms of IL-10 gene regulation at the transcriptional level. Interferon regulatory factor IRF4 is a member of the IRF family of transcription factors and plays critical roles in the development of CD4(+) T cells into Th2 cells. In this present study, we elucidate the underlying mechanism of IRF4 mediated IL-10 gene transcription in primary CD4(+) T cells. Th2 specific binding of IRF4 to the IRF4 responsive elements in IL-10 locus potentiated IL-10 expression in Th2 cells. Knockdown of IRF4 by siRNA decreased IL-10 expression level in Th2 cells. Nuclear translocation of IRF4 was much higher in Th2 cells upon stimulation, which contribute to maintain IL-10(high) phenotype of Th2 cells. Collectively, our results suggest that stimulation driven quantitative differences of IRF4 in the nucleus and its binding to IL-10 regulatory elements are crucial mechanisms to induce IL-10(high) gene expression in Th2 cells.
Assuntos
Núcleo Celular/fisiologia , Regulação da Expressão Gênica/imunologia , Fatores Reguladores de Interferon/genética , Interleucina-10/biossíntese , Células Th2/fisiologia , Animais , Western Blotting , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Fatores Reguladores de Interferon/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/química , RNA/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Organismos Livres de Patógenos Específicos , Células Th2/imunologia , Transcrição GênicaRESUMO
Post-exposure prophylaxis (PEP) is highly effective in preventing disease progression of rabies when used in timely and appropriate manner. The key treatment for PEP is infiltration of rabies immune globulin (RIG) into lesion site after bite exposure, besides wound care and vaccination. Unfortunately, however, RIG is expensive and its supply is limited. Currently, several anti-rabies virus monoclonal antibody (mAb) products are under development as alternatives to RIG, and two recently received regulatory approval in India. In this study, fully human mAbs that recognize different rabies virus glycoprotein conformational antigenic site (II and III) were created from peripheral blood mononuclear cells of heathy vaccinated subjects. These mAbs neutralized a diverse range of lyssavirus types. As at least two anti-rabies virus mAbs are recommended for use in human PEP to ensure broad coverage against diverse lyssaviruses and to minimize possible escape variants, two most potent mAbs, NP-19-9 and 11B6, were selected to be used as cocktail treatment. These two mAbs were broadly reactive to different types of lyssaviruses isolates, and were shown to have no interference with each other. These results suggest that NP-19-9 and 11B6 are potent candidates to be used for PEP, suggesting further studies involving clinical studies in human.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Profilaxia Pós-Exposição/métodos , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Modelos Animais de Doenças , Combinação de Medicamentos , Mapeamento de Epitopos , Humanos , Índia , Mesocricetus , Camundongos , Biblioteca de Peptídeos , Raiva/virologiaRESUMO
A human hybrid cell line, F2N78, was developed by somatic fusion of HEK293 and Namalwa cells for the production recombinant biopharmaceutical proteins. In this study, we performed perfusion culture to verify its potential in culture process used for human cell expression platform. Cell viability could be maintained over 90% and high viable cell density was obtained at higher than 1.0 × 10(7) cells/mL by bleeding process in perfusion culture. The cells were adapted well in both culture modes, but there were apparent differences in protein quality. Compared to fed-batch culture, degalactosylated forms such as G0F and G0 as well as Man5 showed no significant increases in perfusion culture. In terms of charge variants, acidic peaks increased, whereas main peaks constantly decreased according to the length of culture period in both methods.